Short-term traffic flow prediction in smart multimedia system for Internet of Vehicles based on deep belief network

被引:61
|
作者
Kong, Fanhui [1 ]
Li, Jian [1 ]
Jiang, Bin [2 ,3 ]
Song, Houbing [3 ]
机构
[1] Tianjin Univ Technol, Sch Management, Tianjin, Peoples R China
[2] Tianjin Univ, Sch Elect & Informat Engn, Tianjin, Peoples R China
[3] Embry Riddle Aeronaut Univ, Dept Elect Comp Software & Syst Engn, Daytona Beach, FL 32114 USA
关键词
Chaotic time series prediction; Traffic flow data in multimedia system; Internet of Vehicles (IoVs); Restricted Boltzmann Machine (RBM); NEURAL-NETWORK; MODEL; TIME; MACHINES;
D O I
10.1016/j.future.2018.10.052
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In the multimedia system for Internet of Vehicles (IoVs), accurate traffic flow information processing and feedback can give drivers guidance. In traditional information processing for IoVs, few researches deal with traffic flow information processing by deep learning. Specially, most of the existing prediction technologies adopt shallow neural network, and their models for chaotic time series are prone to be restricted by multiple parameters. Over the last few years, the dawning of the big data era creates opportunities for the intelligent traffic control and management. In this paper, we take Restricted Boltzmann Machine (RBM) as the method for traffic flow prediction, which is a typical algorithm based on deep learning architecture. Considering traffic big data aggregation in IoVs, multimedia technologies provide enough real sample data for model training. RBM constructs the long-term model of polymorphic for chaotic time series, using phase space reconstruction to recognize the data. To the best of our knowledge, it is the first time apply RBM model to short-term traffic flow prediction, which can improve the performance of multimedia system in IoVs. Moreover, experimental results show that the proposed method has superior performance than traditional shallow neural network prediction methods. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:460 / 472
页数:13
相关论文
共 50 条
  • [21] Data Dissemination for Industry 4.0 Applications in Internet of Vehicles Based on Short-term Traffic Prediction
    Chen, Chen
    Liu, Lei
    Wan, Shaohua
    Hui, Xiaozhe
    Pei, Qingqi
    ACM TRANSACTIONS ON INTERNET TECHNOLOGY, 2022, 22 (01)
  • [22] Metro short-term traffic flow prediction with deep learning
    Long X.-Q.
    Li J.
    Chen Y.-R.
    Kongzhi yu Juece/Control and Decision, 2019, 34 (08): : 1589 - 1600
  • [23] Data Dissemination for Industry 4.0 Applications in Internet of Vehicles Based on Short-term Traffic Prediction
    Chen, Chen
    Liu, Lei
    Wan, Shaohua
    Hui, Xiaozhe
    Pei, Qingqi
    ACM Transactions on Internet Technology, 2022, 22 (01):
  • [24] Short-Term Load Interval Prediction Using a Deep Belief Network
    Zhang, Xiaoyu
    Shu, Zhe
    Wang, Rui
    Zhang, Tao
    Zha, Yabing
    ENERGIES, 2018, 11 (10)
  • [25] Combination prediction for short-term traffic flow based on artificial neural network
    Liu, Jiansheng
    Fu, Hui
    Liao, Xinxing
    WCICA 2006: SIXTH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-12, CONFERENCE PROCEEDINGS, 2006, : 8659 - +
  • [26] Short-term traffic flow prediction based on improved wavelet neural network
    Qiuxia Chen
    Ying Song
    Jianfeng Zhao
    Neural Computing and Applications, 2021, 33 : 8181 - 8190
  • [27] Short-term traffic flow prediction based on improved wavelet neural network
    Chen, Qiuxia
    Song, Ying
    Zhao, Jianfeng
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (14): : 8181 - 8190
  • [28] Short-Term Traffic Flow Forecasting Using Ensemble Approach Based on Deep Belief Networks
    Liu, Jin
    Wu, NaiQi
    Qiao, Yan
    Li, ZhiWu
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (01) : 404 - 417
  • [29] Short-term Traffic Flow Prediction Based on ANFIS
    Chen Bao-ping
    Ma Zeng-qiang
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMMUNICATION SOFTWARE AND NETWORKS, 2009, : 791 - +
  • [30] Short-Term Traffic Flow Prediction Based on XGBoost
    Dong, Xuchen
    Lei, Ting
    Jin, Shangtai
    Hou, Zhongsheng
    PROCEEDINGS OF 2018 IEEE 7TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE (DDCLS), 2018, : 854 - 859