Soft Filter Pruning for Accelerating Deep Convolutional Neural Networks

被引:0
|
作者
He, Yang [1 ,2 ]
Kang, Guoliang [2 ]
Dong, Xuanyi [2 ]
Fu, Yanwei [3 ]
Yang, Yi [1 ,2 ]
机构
[1] Southern Univ Sci & Technol, SUSTech UTS Joint Ctr CIS, Shenzhen, Guangdong, Peoples R China
[2] Univ Technol Sydney, CAI, Sydney, NSW, Australia
[3] Fudan Univ, Sch Data Sci, Shanghai, Peoples R China
基金
澳大利亚研究理事会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposed a Soft Filter Pruning (SFP) method to accelerate the inference procedure of deep Convolutional Neural Networks (CNNs). Specifically, the proposed SFP enables the pruned filters to be updated when training the model after pruning. SFP has two advantages over previous works: (1) Larger model capacity. Updating previously pruned filters provides our approach with larger optimization space than fixing the filters to zero. Therefore, the network trained by our method has a larger model capacity to learn from the training data. (2) Less dependence on the pre-trained model. Large capacity enables SEP to train from scratch and prune the model simultaneously. In contrast, previous filter pruning methods should be conducted on the basis of the pre-trained model to guarantee their performance. Empirically, SFP from scratch outperforms the previous filter pruning methods. Moreover, our approach has been demonstrated effective for many advanced CNN architectures. Notably, on ILSCRC-2012, SFP reduces more than 42% FLOPs on ResNet-101 with even 0.2% top-5 accuracy improvement, which has advanced the state-of-the-art. Code is publicly available on GitHub: https://github.com/he-y/soft-filter-pruning
引用
收藏
页码:2234 / 2240
页数:7
相关论文
共 50 条
  • [41] FPC: Filter pruning via the contribution of output feature map for deep convolutional neural networks acceleration
    Chen, Yanming
    Wen, Xiang
    Zhang, Yiwen
    He, Qiang
    KNOWLEDGE-BASED SYSTEMS, 2022, 238
  • [42] Auto-Balanced Filter Pruning for Efficient Convolutional Neural Networks
    Ding, Xiaohan
    Ding, Guiguang
    Han, Jungong
    Tang, Sheng
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 6797 - 6804
  • [43] Filter Pruning via Feature Discrimination in Deep Neural Networks
    He, Zhiqiang
    Qian, Yaguan
    Wang, Yuqi
    Wang, Bin
    Guan, Xiaohui
    Gu, Zhaoquan
    Ling, Xiang
    Zeng, Shaoning
    Wang, Haijiang
    Zhou, Wujie
    COMPUTER VISION, ECCV 2022, PT XXI, 2022, 13681 : 245 - 261
  • [44] V-SKP: Vectorized Kernel-Based Structured Kernel Pruning for Accelerating Deep Convolutional Neural Networks
    Koo, Kwanghyun
    Kim, Hyun
    IEEE ACCESS, 2023, 11 : 118547 - 118557
  • [45] Neuroplasticity-Based Pruning Method for Deep Convolutional Neural Networks
    Camacho, Jose David
    Villasenor, Carlos
    Lopez-Franco, Carlos
    Arana-Daniel, Nancy
    APPLIED SCIENCES-BASEL, 2022, 12 (10):
  • [46] Recovering from Random Pruning: On the Plasticity of Deep Convolutional Neural Networks
    Mittal, Deepak
    Bhardwaj, Shweta
    Khapra, Mitesh M.
    Ravindran, Balaraman
    2018 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2018), 2018, : 848 - 857
  • [47] Studying the plasticity in deep convolutional neural networks using random pruning
    Mittal, Deepak
    Bhardwaj, Shweta
    Khapra, Mitesh M.
    Ravindran, Balaraman
    MACHINE VISION AND APPLICATIONS, 2019, 30 (02) : 203 - 216
  • [48] Compression of Deep Convolutional Neural Networks Using Effective Channel Pruning
    Guo, Qingbei
    Wu, Xiao-Jun
    Zhao, Xiuyang
    IMAGE AND GRAPHICS, ICIG 2019, PT I, 2019, 11901 : 760 - 772
  • [49] Studying the plasticity in deep convolutional neural networks using random pruning
    Deepak Mittal
    Shweta Bhardwaj
    Mitesh M. Khapra
    Balaraman Ravindran
    Machine Vision and Applications, 2019, 30 : 203 - 216
  • [50] Filter Level Pruning Based on Similar Feature Extraction for Convolutional Neural Networks
    Li, Lianqiang
    Xu, Yuhui
    Zhu, Jie
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2018, E101D (04) : 1203 - 1206