Recovering from Random Pruning: On the Plasticity of Deep Convolutional Neural Networks

被引:36
|
作者
Mittal, Deepak [1 ]
Bhardwaj, Shweta
Khapra, Mitesh M.
Ravindran, Balaraman
机构
[1] Indian Inst Technol Madras, Robert Bosch Ctr Data Sci, Dept Comp Sci & Engn, Madras, Tamil Nadu, India
关键词
D O I
10.1109/WACV.2018.00098
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently there has been a lot of work on pruning filters from deep convolutional neural networks (CNNs) with the intention of reducing computations. The key idea is to rank the filters based on a certain criterion (say, l(1)-norm, average percentage of zeros, etc) and retain only the top ranked filters. Once the low scoring filters are pruned away the remainder of the network is fine tuned and is shown to give performance comparable to the original unpruned network. In this work, we report experiments which suggest that the comparable performance of the pruned network is not due to the specific criterion chosen but due to the inherent plasticity of deep neural networks which allows them to recover from the loss of pruned filters once the rest of the filters are fine-tuned. Specifically, we show counter-intuitive results wherein by randomly pruning 25-50% filters from deep CNNs we are able to obtain the same performance as obtained by using state of the art pruning methods. We empirically validate our claims by doing an exhaustive evaluation with VGG-16 and ResNet-50. Further, we also evaluate a real world scenario where a CNN trained on all 1000 ImageNet classes needs to be tested on only a small set of classes at test time (say, only animals). We create a new benchmark dataset from ImageNet to evaluate such class specific pruning and show that even here a random pruning strategy gives close to state of the art performance. Lastly, unlike existing approaches which mainly focus on the task of image classification, in this work we also report results on object detection. We show that using a simple random pruning strategy we can achieve significant speed up in object detection (74% improvement in fps) while retaining the same accuracy as that of the original Faster RCNN model.
引用
收藏
页码:848 / 857
页数:10
相关论文
共 50 条
  • [1] Studying the plasticity in deep convolutional neural networks using random pruning
    Mittal, Deepak
    Bhardwaj, Shweta
    Khapra, Mitesh M.
    Ravindran, Balaraman
    [J]. MACHINE VISION AND APPLICATIONS, 2019, 30 (02) : 203 - 216
  • [2] Studying the plasticity in deep convolutional neural networks using random pruning
    Deepak Mittal
    Shweta Bhardwaj
    Mitesh M. Khapra
    Balaraman Ravindran
    [J]. Machine Vision and Applications, 2019, 30 : 203 - 216
  • [3] Structured Pruning of Deep Convolutional Neural Networks
    Anwar, Sajid
    Hwang, Kyuyeon
    Sung, Wonyong
    [J]. ACM JOURNAL ON EMERGING TECHNOLOGIES IN COMPUTING SYSTEMS, 2017, 13 (03)
  • [4] Activation Pruning of Deep Convolutional Neural Networks
    Ardakani, Arash
    Condo, Carlo
    Gross, Warren J.
    [J]. 2017 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2017), 2017, : 1325 - 1329
  • [5] Incremental Filter Pruning via Random Walk for Accelerating Deep Convolutional Neural Networks
    Li, Qinghua
    Li, Cuiping
    Chen, Hong
    [J]. PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING (WSDM '20), 2020, : 358 - 366
  • [6] Structured Pruning for Deep Convolutional Neural Networks: A Survey
    He, Yang
    Xiao, Lingao
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (05) : 2900 - 2919
  • [7] Pruning Deep Convolutional Neural Networks Architectures with Evolution Strategy
    Fernandes, Francisco E., Jr.
    Yen, Gary G.
    [J]. INFORMATION SCIENCES, 2021, 552 : 29 - 47
  • [8] Asymptotic Soft Filter Pruning for Deep Convolutional Neural Networks
    He, Yang
    Dong, Xuanyi
    Kang, Guoliang
    Fu, Yanwei
    Yan, Chenggang
    Yang, Yi
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (08) : 3594 - 3604
  • [9] Soft Filter Pruning for Accelerating Deep Convolutional Neural Networks
    He, Yang
    Kang, Guoliang
    Dong, Xuanyi
    Fu, Yanwei
    Yang, Yi
    [J]. PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 2234 - 2240
  • [10] Soft Taylor Pruning for Accelerating Deep Convolutional Neural Networks
    Rong, Jintao
    Yu, Xiyi
    Zhang, Mingyang
    Ou, Linlin
    [J]. IECON 2020: THE 46TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2020, : 5343 - 5349