CONVEXITY OF LEVEL SETS FOR ELLIPTIC PROBLEMS IN CONVEX DOMAINS OR CONVEX RINGS: TWO COUNTEREXAMPLES

被引:25
|
作者
Hamel, Francois [1 ,2 ]
Nadirashvili, Nikolai [1 ]
Sire, Yannick [1 ]
机构
[1] Aix Marseille Univ, CNRS, UMR 7353, I2M, 39 Rue F Joliot Curie, F-13453 Marseille 13, France
[2] Inst Univ France, Paris, France
基金
欧洲研究理事会;
关键词
BOUNDARY-VALUE-PROBLEMS; PARTIAL-DIFFERENTIAL-EQUATIONS; REMOVABLE SINGULARITIES; QUASICONCAVE SOLUTIONS; DIRICHLET PROBLEMS; MAXIMUM PRINCIPLE; POWER CONCAVITY; NONCONVEXITY; EIGENVALUE; UNIQUENESS;
D O I
10.1353/ajm.2016.0012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with some geometrical properties of solutions of some semilinear elliptic equations in bounded convex domains or convex rings. Constant boundary conditions are imposed on the single component of the boundary when the domain is convex, or on each of the two components of the boundary when the domain is a convex ring. A function is called quasiconcave if its superlevel sets, defined in a suitable way when the domain is a convex ring, are all convex. In this paper, we prove that the superlevel sets of the solutions do not always inherit the convexity or ring-convexity of the domain. Namely, we give two counterexamples to this quasiconcavity property: the first one for some two-dimensional convex domains and the second one for some convex rings in any dimension.
引用
收藏
页码:499 / 527
页数:29
相关论文
共 50 条
  • [41] Two problems on h-convex sets in the hyperbolic space
    A.M. Naveira
    A. Tarrío
    Archiv der Mathematik, 1997, 68 : 514 - 519
  • [42] Two problems on h-convex sets in the hyperbolic space
    Naveira, AM
    Tarrio, A
    ARCHIV DER MATHEMATIK, 1997, 68 (06) : 514 - 519
  • [43] C*-convex sets generated by C*-convex maps in *-rings and their C*-faces
    Meymand, Ali Ebrahimi
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2022, (48): : 799 - 805
  • [44] C*-convex sets generated by C*-convex maps in *-rings and their C*-faces
    Meymand, Ali Ebrahimi
    Italian Journal of Pure and Applied Mathematics, 2022, 48 : 799 - 805
  • [45] ON UNIONS OF TWO CONVEX SETS
    MCKINNEY, RL
    CANADIAN JOURNAL OF MATHEMATICS, 1966, 18 (04): : 883 - &
  • [46] Nearly convex sets: fine properties and domains or ranges of subdifferentials of convex functions
    Sarah M. Moffat
    Walaa M. Moursi
    Xianfu Wang
    Mathematical Programming, 2016, 160 : 193 - 223
  • [47] Nearly convex sets: fine properties and domains or ranges of subdifferentials of convex functions
    Moffat, Sarah M.
    Moursi, Walaa M.
    Wang, Xianfu
    MATHEMATICAL PROGRAMMING, 2016, 160 (1-2) : 193 - 223
  • [48] Convex domains and K-spectral sets
    Badea, C
    Crouzeix, M
    Delyon, B
    MATHEMATISCHE ZEITSCHRIFT, 2006, 252 (02) : 345 - 365
  • [49] Convex domains and K-spectral sets
    Catalin Badea
    Michel Crouzeix
    Bernard Delyon
    Mathematische Zeitschrift, 2006, 252 : 345 - 365
  • [50] CONVEX OPTIMIZATION PROBLEMS ON DIFFERENTIABLE SETS
    Zheng, Xi Yin
    SIAM JOURNAL ON OPTIMIZATION, 2023, 33 (01) : 338 - 359