CONVEXITY OF LEVEL SETS FOR ELLIPTIC PROBLEMS IN CONVEX DOMAINS OR CONVEX RINGS: TWO COUNTEREXAMPLES
被引:25
|
作者:
Hamel, Francois
论文数: 0引用数: 0
h-index: 0
机构:
Aix Marseille Univ, CNRS, UMR 7353, I2M, 39 Rue F Joliot Curie, F-13453 Marseille 13, France
Inst Univ France, Paris, FranceAix Marseille Univ, CNRS, UMR 7353, I2M, 39 Rue F Joliot Curie, F-13453 Marseille 13, France
Hamel, Francois
[1
,2
]
Nadirashvili, Nikolai
论文数: 0引用数: 0
h-index: 0
机构:
Aix Marseille Univ, CNRS, UMR 7353, I2M, 39 Rue F Joliot Curie, F-13453 Marseille 13, FranceAix Marseille Univ, CNRS, UMR 7353, I2M, 39 Rue F Joliot Curie, F-13453 Marseille 13, France
Nadirashvili, Nikolai
[1
]
Sire, Yannick
论文数: 0引用数: 0
h-index: 0
机构:
Aix Marseille Univ, CNRS, UMR 7353, I2M, 39 Rue F Joliot Curie, F-13453 Marseille 13, FranceAix Marseille Univ, CNRS, UMR 7353, I2M, 39 Rue F Joliot Curie, F-13453 Marseille 13, France
Sire, Yannick
[1
]
机构:
[1] Aix Marseille Univ, CNRS, UMR 7353, I2M, 39 Rue F Joliot Curie, F-13453 Marseille 13, France
BOUNDARY-VALUE-PROBLEMS;
PARTIAL-DIFFERENTIAL-EQUATIONS;
REMOVABLE SINGULARITIES;
QUASICONCAVE SOLUTIONS;
DIRICHLET PROBLEMS;
MAXIMUM PRINCIPLE;
POWER CONCAVITY;
NONCONVEXITY;
EIGENVALUE;
UNIQUENESS;
D O I:
10.1353/ajm.2016.0012
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
This paper deals with some geometrical properties of solutions of some semilinear elliptic equations in bounded convex domains or convex rings. Constant boundary conditions are imposed on the single component of the boundary when the domain is convex, or on each of the two components of the boundary when the domain is a convex ring. A function is called quasiconcave if its superlevel sets, defined in a suitable way when the domain is a convex ring, are all convex. In this paper, we prove that the superlevel sets of the solutions do not always inherit the convexity or ring-convexity of the domain. Namely, we give two counterexamples to this quasiconcavity property: the first one for some two-dimensional convex domains and the second one for some convex rings in any dimension.
机构:
Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R ChinaXi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R China
Jia, Huilian
Wang, Lihe
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
Univ Iowa, Dept Math, Iowa City, IA 52242 USAXi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R China