Morphology-controlled fabrication of nanostructured WO3 thin films by magnetron sputtering with glancing angle deposition for enhanced efficiency photo-electrochemical water splitting

被引:23
|
作者
Limwichean, S. [1 ]
Kasayapanand, N. [1 ]
Ponchio, C. [2 ,3 ]
Nakajima, H. [4 ]
Patthanasettakul, V [5 ]
Eiamchai, P. [5 ]
Meng, G. [6 ,7 ]
Horprathum, M. [5 ]
机构
[1] King Mongkuts Univ Technol Thonburi, Sch Energy Environm & Mat, Energy Technol Program, 126 Pracha Uthit Rd, Bangkok 10140, Thailand
[2] Rajamangala Univ Technol Thanyaburi, Fac Sci & Technol, Dept Chem, Pathum Thani 12110, Thailand
[3] Rajamangala Univ Technol Thanyaburi, Fac Sci & Technol, Adv Mat Design & Dev AMDD Res Unit, Pathum Thani 12110, Thailand
[4] Synchrotron Light Res Inst, Maung 30000, Nakhon Ratchasi, Thailand
[5] Natl Elect & Comp Technol Ctr, Spectroscop & Sensing Devices Res Grp, Optoelectrochem Sensing Res Team, Pathum Thani 12120, Thailand
[6] Chinese Acad Sci, Anhui Inst Opt & Fine Mech, Anhui Prov Key Lab Photon Devices & Mat, Hefei 230031, Peoples R China
[7] Chinese Acad Sci, Key Lab Photovolta & Energy Conservat Mat, Hefei Inst Phys Sci, Hefei 230031, Peoples R China
关键词
WO3; GLAD; Magnetron sputtering; PEC; Nanostructure; TUNGSTEN-OXIDE; MONOCLINIC WO3; CRYSTAL FACET; FACILE FABRICATION; ION IRRADIATION; WORK FUNCTION; METAL-OXIDES; NANORODS; PHOTOANODES; OXIDATION;
D O I
10.1016/j.ceramint.2021.08.359
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Herein, the tungsten trioxide (WO3) nanostructure thin films with different morphologies are firstly fabricated by magnetron sputtering with glancing angle deposition technique (MS-GLAD), followed by the post annealed treatment process in air ambient for 2 h. It is demonstrated that the geometry of MS-GLAD setup, mainly substrate position, played a crucial role in determining the morphology, crystallinity, optical transmittance, and photo-electrochemical (PEC) performance of the WO3 nanostructured thin film. With the different substrate positions in the MS-GLAD system, the WO3 nanorod film layer could be precisely changed to combine an underlying dense layer with a nanorod layer and then nanocolumnar film. Moreover, the prepared samples' chemical composition and work function are studied by X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS), respectively. The combining WO3 nanostructure produced high PEC efficiency compared to the single layer of the WO3 nanorods sample and the dense WO3 thin film sample. Thus, morphology-controlled nanostructure film based on the MS-GLAD technique in our study provides a simple approach to enhance the photo-anode for PEC water splitting application.
引用
收藏
页码:34455 / 34462
页数:8
相关论文
共 40 条
  • [31] Improved hydrogen evolution efficiency in water splitting with WO3 thin film via physical vapor deposition
    Junaid, Muhammad
    Sharaf, Mohamed
    El-Meligy, Mohammad
    Riaz, Muhammad Amjad
    Dar, Mohd Arif
    Khan, Irfan Ullah
    JOURNAL OF THE CHINESE CHEMICAL SOCIETY, 2025,
  • [32] Enhanced Photocatalytic Water Splitting on Very Thin WO3 Films Activated by High-Temperature Annealing
    Jelinska, Aldona
    Bienkowski, Krzysztof
    Jadwiszczak, Michal
    Pisarek, Marcin
    Strawski, Marcin
    Kurzydlowski, Dominik
    Solarska, Renata
    Augustynski, Jan
    ACS CATALYSIS, 2018, 8 (11): : 10573 - 10580
  • [33] Mn2O3-4TiO2 semiconducting composite thin films for photo-electrochemical water splitting
    Mansoor, Muhammad Adil
    Mazhar, Muhammad
    McKee, Vickie
    Arifin, Zainudin
    POLYHEDRON, 2014, 75 : 135 - 140
  • [34] Phase evolution in annealed Ni-doped WO3 nanorod films prepared via a glancing angle deposition technique for enhanced photoelectrochemical performance
    Wattanawikkam, Chakkaphan
    Bootchanont, Atipong
    Porjai, Porramain
    Jetjamnong, Chanthawut
    Kowong, Rattanachai
    Lertvanithphol, Tossaporn
    Chananonnawathorn, Chanunthorn
    Chirawatkul, Prae
    Chanlek, Narong
    Nakajima, Hideki
    Songsiriritthigul, Prayoon
    Kiama, Nuanlaor
    Nareejun, Watcharapong
    Tomkham, Praewnapa
    Ponchio, Chatchai
    Rahong, Sakon
    Klamchuen, Annop
    Horprathum, Mati
    APPLIED SURFACE SCIENCE, 2022, 584
  • [35] The Influence of the Structural and Morphological Properties of WO3 Thin Films Obtained by PLD on the Photoelectrochemical Water-Splitting Reaction Efficiency
    Andrei, Florin
    Andrei, Andreea
    Birjega, Ruxandra
    Sirjita, Eduard Nicolae
    Radu, Alina Irina
    Dinescu, Maria
    Ion, Valentin
    Maraloiu, Valentin-Adrian
    Teodorescu, Valentin Serban
    Scarisoreanu, Nicu Doinel
    NANOMATERIALS, 2021, 11 (01) : 1 - 13
  • [36] Fabrication of Ag2O/WO3 p-n heterojunction composite thin films by magnetron sputtering for visible light photocatalysis
    Jo, Young Woong
    Loka, Chadrasekhar
    Lee, Kee-Sun
    Lim, Jae-Hyun
    RSC ADVANCES, 2020, 10 (27) : 16187 - 16195
  • [37] Bias-free Photo-electrochemical Water Splitting Driven by Large Photopotential of Epitaxial (Pb,La)TiO3 Ferroelectric Thin Films
    Kweon, Sang Hyo
    Kamada, Yusuke
    Harada, Takashi
    Nakanishi, Shuji
    Mukouyama, Yoshiharu
    Kanno, Isaku
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (02) : 2606 - 2612
  • [38] Photo-electrochemical Oxidation of Organic C1 Molecules over WO3 Films in Aqueous Electrolyte: Competition Between Water Oxidation and C1 Oxidation
    Reichert, Robert
    Zambrzycki, Christian
    Jusys, Zenonas
    Behm, R. Juergen
    CHEMSUSCHEM, 2015, 8 (21) : 3677 - 3687
  • [39] Improving photo-stability and charge transport properties of Cu2O/CuO for photo-electrochemical water splitting using alternate layers of WO3 or CuWO4 produced by the same route
    Jamali, Soolmaz
    Moshaii, Ahmad
    APPLIED SURFACE SCIENCE, 2017, 419 : 269 - 276
  • [40] Novel single source precursor for synthesis of Sb2Se3 nanorods and deposition of thin films by AACVD: Photo-electrochemical study for water reduction catalysis
    Khan, Malik Dilshad
    Aamir, Muhammad
    Sohail, Manzar
    Sher, Muhammad
    Akhtar, Javeed
    Malik, Mohammad Azad
    Revaprasadu, Neerish
    SOLAR ENERGY, 2018, 169 : 526 - 534