Morphology-controlled fabrication of nanostructured WO3 thin films by magnetron sputtering with glancing angle deposition for enhanced efficiency photo-electrochemical water splitting

被引:23
|
作者
Limwichean, S. [1 ]
Kasayapanand, N. [1 ]
Ponchio, C. [2 ,3 ]
Nakajima, H. [4 ]
Patthanasettakul, V [5 ]
Eiamchai, P. [5 ]
Meng, G. [6 ,7 ]
Horprathum, M. [5 ]
机构
[1] King Mongkuts Univ Technol Thonburi, Sch Energy Environm & Mat, Energy Technol Program, 126 Pracha Uthit Rd, Bangkok 10140, Thailand
[2] Rajamangala Univ Technol Thanyaburi, Fac Sci & Technol, Dept Chem, Pathum Thani 12110, Thailand
[3] Rajamangala Univ Technol Thanyaburi, Fac Sci & Technol, Adv Mat Design & Dev AMDD Res Unit, Pathum Thani 12110, Thailand
[4] Synchrotron Light Res Inst, Maung 30000, Nakhon Ratchasi, Thailand
[5] Natl Elect & Comp Technol Ctr, Spectroscop & Sensing Devices Res Grp, Optoelectrochem Sensing Res Team, Pathum Thani 12120, Thailand
[6] Chinese Acad Sci, Anhui Inst Opt & Fine Mech, Anhui Prov Key Lab Photon Devices & Mat, Hefei 230031, Peoples R China
[7] Chinese Acad Sci, Key Lab Photovolta & Energy Conservat Mat, Hefei Inst Phys Sci, Hefei 230031, Peoples R China
关键词
WO3; GLAD; Magnetron sputtering; PEC; Nanostructure; TUNGSTEN-OXIDE; MONOCLINIC WO3; CRYSTAL FACET; FACILE FABRICATION; ION IRRADIATION; WORK FUNCTION; METAL-OXIDES; NANORODS; PHOTOANODES; OXIDATION;
D O I
10.1016/j.ceramint.2021.08.359
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Herein, the tungsten trioxide (WO3) nanostructure thin films with different morphologies are firstly fabricated by magnetron sputtering with glancing angle deposition technique (MS-GLAD), followed by the post annealed treatment process in air ambient for 2 h. It is demonstrated that the geometry of MS-GLAD setup, mainly substrate position, played a crucial role in determining the morphology, crystallinity, optical transmittance, and photo-electrochemical (PEC) performance of the WO3 nanostructured thin film. With the different substrate positions in the MS-GLAD system, the WO3 nanorod film layer could be precisely changed to combine an underlying dense layer with a nanorod layer and then nanocolumnar film. Moreover, the prepared samples' chemical composition and work function are studied by X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS), respectively. The combining WO3 nanostructure produced high PEC efficiency compared to the single layer of the WO3 nanorods sample and the dense WO3 thin film sample. Thus, morphology-controlled nanostructure film based on the MS-GLAD technique in our study provides a simple approach to enhance the photo-anode for PEC water splitting application.
引用
收藏
页码:34455 / 34462
页数:8
相关论文
共 40 条
  • [21] Thickness control in electrophoretic deposition of WO3 nanofiber thin films for solar water splitting
    Fang, Yuanxing
    Lee, Wei Cheat
    Canciani, Giacomo E.
    Draper, Thomas C.
    Al-Bawi, Zainab F.
    Bedi, Jasbir S.
    Perry, Christopher C.
    Chen, Qiao
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2015, 202 : 39 - 45
  • [22] PVP-assisted synthesis of nanostructured transparent WO3 thin films for photoelectrochemical water splitting
    Go, Geun Ho
    Shinde, Pravin S.
    Doh, Chil Hoon
    Lee, Won Jae
    MATERIALS & DESIGN, 2016, 90 : 1005 - 1009
  • [23] Optical H2 sensing properties of vertically aligned Pd/WO3 nanorods thin films deposited via glancing angle rf magnetron sputtering
    Wisitsoorat, A.
    Ahmad, M. Z.
    Yaacob, M. H.
    Horpratum, M.
    Phakaratkul, D.
    Lomas, T.
    Tuantranont, A.
    Wlodarski, W.
    SENSORS AND ACTUATORS B-CHEMICAL, 2013, 182 : 795 - 801
  • [24] Effect of the deposition conditions on the properties of photocatalytic WO3 thin films prepared by mid-frequency magnetron sputtering
    Li, H.
    Mu, Z. X.
    Liu, S. G.
    Zhang, J. L.
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2019, 99 : 99 - 105
  • [25] In situ synthesis of crystalline Ag-WO3 nanosheets with enhanced solar photo-electrochemical performance for splitting water
    Wen, Puhong
    Wang, Chuanchuan
    Lan, Yuzhu
    Jiang, Xiaowen
    Ren, Lijun
    CRYSTENGCOMM, 2020, 22 (01) : 105 - 112
  • [26] Facile Fabrication of WO3 Nanoplates Thin Films with Dominant Crystal Facet of (002) for Water Splitting
    Zheng, Jin You
    Song, Guang
    Hong, Jisang
    Thanh Khue Van
    Pawar, Amol Uttam
    Kim, Do Yoon
    Kim, Chang Woo
    Haider, Zeeshan
    Kang, Young Soo
    CRYSTAL GROWTH & DESIGN, 2014, 14 (11) : 6057 - 6066
  • [27] Silver-Boosted WO3/CuWO4 Heterojunction Thin Films for Enhanced Photoelectrochemical Water Splitting Efficiency
    Loka, Chadrasekhar
    Gelija, Devarajulu
    Vattikuti, S. V. Prabhakar
    Lee, Kee-Sun
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 11 (32) : 11978 - 11990
  • [28] Quasi-core-shell TiO2/WO3 and WO3/TiO2 nanorod arrays fabricated by glancing angle deposition for solar water splitting
    Smith, Wilson
    Wolcott, Abraham
    Fitzmorris, Robert Carl
    Zhang, Jin Z.
    Zhao, Yiping
    JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (29) : 10792 - 10800
  • [29] Enhanced activity of electrodeposited WO3 thin films as bi-functional electrocatalysts for water splitting
    Mehboob, Adil
    Sadiqa, Ayesha
    Ahmad, Awais
    Anwar, Aneela
    Tabassum, Sidra
    Arsalan, Muhammad
    Habila, Mohamed A.
    Altaf, Adnan Raza
    Yao, Yonggang
    El-Naas, Muftah H.
    RESULTS IN ENGINEERING, 2024, 23
  • [30] Optical Properties of WO3 Thin Films Modeled by Finite-Difference Time-Domain and Fabricated by Glancing Angle Deposition
    Charles, Cedric
    Martin, Nicolas
    Devel, Michel
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2012, 12 (12) : 9125 - 9130