Conservative Numerical Schemes for the Nonlinear Fractional Schrodinger Equation

被引:1
|
作者
Wu, Longbin [1 ]
Ma, Qiang [1 ]
Ding, Xiaohua [1 ]
机构
[1] Harbin Inst Technol Weihai, Dept Math, Weihai 264209, Peoples R China
基金
中国国家自然科学基金;
关键词
Crank-Nicolson Fourier collocation method; nonlinear fractional Schrodinger equation; conservation laws; existence and uniqueness; convergence; BIREFRINGENT OPTICAL-FIBERS; SPECTRAL METHOD; DIFFERENCE SCHEME; GALERKIN METHODS; STABILITY; EFFICIENT; SOLITONS;
D O I
10.4208/eajam.110920.060121
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the Crank-Nicolson Fourier collocation method for the nonlinear fractional Schrodinger equation containing a fractional derivative. We prove that at each discrete time the method preserves the discrete mass and energy conservation laws. The existence, uniqueness and convergence of the numerical solution are also investigated. In particular, we show that the method has the second-order accuracy in time and the spectral accuracy in space. Since the proposed schemes are implicit, they are solved by an iteration algorithm with FFT. Two examples illustrate the efficiency and accuracy of the numerical schemes.
引用
收藏
页码:560 / 579
页数:20
相关论文
共 50 条
  • [21] Conservative numerical schemes for the Ostrovsky equation
    Yaguchi, Takaharu
    Matsuo, Takayasu
    Sugihara, Masaaki
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (04) : 1036 - 1048
  • [22] Conservative numerical schemes for the Vlasov equation
    Filbet, F
    Sonnendrücker, E
    Bertrand, P
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 172 (01) : 166 - 187
  • [23] Fast conservative numerical algorithm for the coupled fractional Klein-Gordon-Schrodinger equation
    Li, Meng
    Huang, Chengming
    Zhao, Yongliang
    [J]. NUMERICAL ALGORITHMS, 2020, 84 (03) : 1081 - 1119
  • [24] Mass-conservative Fourier spectral methods for solving the fractional nonlinear Schrodinger equation
    Duo, Siwei
    Zhang, Yanzhi
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 71 (11) : 2257 - 2271
  • [25] On a conservative Fourier spectral Galerkin method for cubic nonlinear Schrodinger equation with fractional Laplacian
    Zou, Guang-an
    Wang, Bo
    Sheu, Tony W. H.
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2020, 168 (168) : 122 - 134
  • [26] A NONLINEAR SCHRODINGER EQUATION WITH FRACTIONAL NOISE
    Deya, Aurelien
    Schaeffer, Nicolas
    Thomann, Laurent
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (06) : 4375 - 4422
  • [27] On the solution of the fractional nonlinear Schrodinger equation
    Rida, S. Z.
    EI-Sherbiny, H. M.
    Arafa, A. A. M.
    [J]. PHYSICS LETTERS A, 2008, 372 (05) : 553 - 558
  • [28] The fractional discrete nonlinear Schrodinger equation
    Molina, Mario, I
    [J]. PHYSICS LETTERS A, 2020, 384 (08)
  • [29] Exponential time differencing schemes for the 3-coupled nonlinear fractional Schrodinger equation
    Liang, Xiao
    Bhatt, Harish
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [30] Nonlinear Schrodinger-Helmholtz equation as numerical regularization of the nonlinear Schrodinger equation
    Cao, Yanping
    Musslimani, Ziad H.
    Titi, Edriss S.
    [J]. NONLINEARITY, 2008, 21 (05) : 879 - 898