Machine learning of phase transitions in nonlinear polariton lattices

被引:13
|
作者
Zvyagintseva, Daria [1 ]
Sigurdsson, Helgi [2 ]
Kozin, Valerii K. [2 ,3 ]
Iorsh, Ivan [3 ]
Shelykh, Ivan A. [2 ,3 ]
Ulyantsev, Vladimir [1 ]
Kyriienko, Oleksandr [4 ]
机构
[1] ITMO Univ, Comp Technol Lab, St Petersburg 197101, Russia
[2] Univ Iceland, Sci Inst, Dunhagi 3, IS-107 Reykjavik, Iceland
[3] ITMO Univ, Dept Phys & Engn, St Petersburg 197101, Russia
[4] Univ Exeter, Dept Phys & Astron, Stocker Rd, Exeter EX4 4QL, Devon, England
基金
英国工程与自然科学研究理事会; 俄罗斯基础研究基金会;
关键词
VORTICES;
D O I
10.1038/s42005-021-00755-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The strong nonlinearity and absence of particle conservation leads to non-equilibrium nature of exciton-polariton condensates. Here, an unsupervised machine learning approach is employed to map phases of a polariton condensate lattice, and classify unique polarization patterns Polaritonic lattices offer a unique testbed for studying nonlinear driven-dissipative physics. They show qualitative changes of their steady state as a function of system parameters, which resemble non-equilibrium phase transitions. Unlike their equilibrium counterparts, these transitions cannot be characterised by conventional statistical physics methods. Here, we study a lattice of square-arranged polariton condensates with nearest-neighbour coupling, and simulate the polarisation (pseudospin) dynamics of the polariton lattice, observing regions with distinct steady-state polarisation patterns. We classify these patterns using machine learning methods and determine the boundaries separating different regions. First, we use unsupervised data mining techniques to sketch the boundaries of phase transitions. We then apply learning by confusion, a neural network-based method for learning labels in a dataset, and extract the polaritonic phase diagram. Our work takes a step towards AI-enabled studies of polaritonic systems.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] PHASE-TRANSITIONS IN COUPLED MAP LATTICES
    GRASSBERGER, P
    SCHREIBER, T
    PHYSICA D, 1991, 50 (02): : 177 - 188
  • [42] Change in order of phase transitions on fractal lattices
    Windus, Alastair Lee
    Jensen, Henrik Jeldtoft
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2009, 388 (15-16) : 3107 - 3112
  • [43] Lattices in machine learning: Complexity issues
    Derrick G. Kourie
    G. Deon Oosthuizen
    Acta Informatica, 1998, 35 : 269 - 292
  • [44] Topological edge and corner states in coupled wave lattices in nonlinear polariton condensates
    Schneider, Tobias
    Gao, Wenlong
    Zentgraf, Thomas
    Schumacher, Stefan
    Ma, Xuekai
    NANOPHOTONICS, 2024, 13 (04) : 509 - 518
  • [45] Topological quantum phase transitions retrieved through unsupervised machine learning
    Che, Yanming
    Gneiting, Clemens
    Liu, Tao
    Nori, Franco
    PHYSICAL REVIEW B, 2020, 102 (13)
  • [46] Unsupervised Machine Learning of Quantum Phase Transitions Using Diffusion Maps
    Lidiak, Alexander
    Gong, Zhexuan
    PHYSICAL REVIEW LETTERS, 2020, 125 (22)
  • [47] Unsupervised machine learning of topological phase transitions from experimental data
    Kaeming, Niklas
    Dawid, Anna
    Kottmann, Korbinian
    Lewenstein, Maciej
    Sengstock, Klaus
    Dauphin, Alexandre
    Weitenberg, Christof
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2021, 2 (03):
  • [48] Molecular screening for solid-solid phase transitions by machine learning
    Takagi, Daisuke
    Ishizaki, Kazuki
    Asahi, Toru
    Taniguchi, Takuya
    DIGITAL DISCOVERY, 2023, 2 (04): : 1126 - 1133
  • [49] Machine learning insights into CaCO3 phase transitions: Synthesis and phase prediction
    Huang, Yanqi
    De Spiegeleer, Bart
    Parakhonskiy, Bogdan
    Skirtach, Andre G.
    CERAMICS INTERNATIONAL, 2024, 50 (13) : 23284 - 23295
  • [50] Polariton Lattices for Quantum Simulation
    Amo, A.
    2014 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2014,