Machine learning of phase transitions in nonlinear polariton lattices

被引:13
|
作者
Zvyagintseva, Daria [1 ]
Sigurdsson, Helgi [2 ]
Kozin, Valerii K. [2 ,3 ]
Iorsh, Ivan [3 ]
Shelykh, Ivan A. [2 ,3 ]
Ulyantsev, Vladimir [1 ]
Kyriienko, Oleksandr [4 ]
机构
[1] ITMO Univ, Comp Technol Lab, St Petersburg 197101, Russia
[2] Univ Iceland, Sci Inst, Dunhagi 3, IS-107 Reykjavik, Iceland
[3] ITMO Univ, Dept Phys & Engn, St Petersburg 197101, Russia
[4] Univ Exeter, Dept Phys & Astron, Stocker Rd, Exeter EX4 4QL, Devon, England
基金
英国工程与自然科学研究理事会; 俄罗斯基础研究基金会;
关键词
VORTICES;
D O I
10.1038/s42005-021-00755-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The strong nonlinearity and absence of particle conservation leads to non-equilibrium nature of exciton-polariton condensates. Here, an unsupervised machine learning approach is employed to map phases of a polariton condensate lattice, and classify unique polarization patterns Polaritonic lattices offer a unique testbed for studying nonlinear driven-dissipative physics. They show qualitative changes of their steady state as a function of system parameters, which resemble non-equilibrium phase transitions. Unlike their equilibrium counterparts, these transitions cannot be characterised by conventional statistical physics methods. Here, we study a lattice of square-arranged polariton condensates with nearest-neighbour coupling, and simulate the polarisation (pseudospin) dynamics of the polariton lattice, observing regions with distinct steady-state polarisation patterns. We classify these patterns using machine learning methods and determine the boundaries separating different regions. First, we use unsupervised data mining techniques to sketch the boundaries of phase transitions. We then apply learning by confusion, a neural network-based method for learning labels in a dataset, and extract the polaritonic phase diagram. Our work takes a step towards AI-enabled studies of polaritonic systems.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Equilibrium configurations and phase transitions in dipole lattices
    Shutyi, A. M.
    PHYSICS OF THE SOLID STATE, 2013, 55 (11) : 2267 - 2279
  • [32] Topological phase transitions in tilted optical lattices
    Kolovsky, Andrey R.
    PHYSICAL REVIEW A, 2018, 98 (01)
  • [33] Structural phase transitions in lattices of magnetic bubbles
    Gerasimchuk, V.S.
    Gorobets, Yu.I.
    JETP Letters (Translation of JETP Pis'ma v Redaktsiyu), 1994, 59 (07):
  • [34] Phase transitions on trimer lattices of magnetic dipoles
    Strongin, V. S.
    Nalivaiko, I. N.
    Chesnokov, M. A.
    ST PETERSBURG POLYTECHNIC UNIVERSITY JOURNAL-PHYSICS AND MATHEMATICS, 2022, 15 (03): : 44 - 47
  • [35] Topological quantum phase transitions in superconductivity on lattices
    Hatsugai, Y
    Ryu, S
    PHYSICAL REVIEW B, 2002, 65 (21):
  • [36] Phase Transitions in Optical Lattices at Finite Temperatures
    Polak, T. P.
    Kopec, T. K.
    ACTA PHYSICA POLONICA A, 2009, 115 (01) : 418 - 420
  • [37] Lattices in machine learning: Complexity issues
    Kourie, DG
    Oosthuizen, GD
    ACTA INFORMATICA, 1998, 35 (04) : 269 - 292
  • [38] THERMODYNAMICS OF PHASE TRANSITIONS IN COMPRESSIBLE SOLID LATTICES
    RICE, OK
    JOURNAL OF CHEMICAL PHYSICS, 1954, 22 (09): : 1535 - 1544
  • [39] Phase transitions in dipolar gases in optical lattices
    Sherkunov, Y.
    Cheianov, Vadim V.
    Fal'ko, Vladimir
    PHYSICAL REVIEW A, 2012, 85 (02):
  • [40] Magnetic quantum phase transitions in Kondo lattices
    Si, QM
    Zhu, JX
    Grempel, DR
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2005, 17 (37) : R1025 - R1040