Machine learning of phase transitions in nonlinear polariton lattices

被引:13
|
作者
Zvyagintseva, Daria [1 ]
Sigurdsson, Helgi [2 ]
Kozin, Valerii K. [2 ,3 ]
Iorsh, Ivan [3 ]
Shelykh, Ivan A. [2 ,3 ]
Ulyantsev, Vladimir [1 ]
Kyriienko, Oleksandr [4 ]
机构
[1] ITMO Univ, Comp Technol Lab, St Petersburg 197101, Russia
[2] Univ Iceland, Sci Inst, Dunhagi 3, IS-107 Reykjavik, Iceland
[3] ITMO Univ, Dept Phys & Engn, St Petersburg 197101, Russia
[4] Univ Exeter, Dept Phys & Astron, Stocker Rd, Exeter EX4 4QL, Devon, England
基金
英国工程与自然科学研究理事会; 俄罗斯基础研究基金会;
关键词
VORTICES;
D O I
10.1038/s42005-021-00755-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The strong nonlinearity and absence of particle conservation leads to non-equilibrium nature of exciton-polariton condensates. Here, an unsupervised machine learning approach is employed to map phases of a polariton condensate lattice, and classify unique polarization patterns Polaritonic lattices offer a unique testbed for studying nonlinear driven-dissipative physics. They show qualitative changes of their steady state as a function of system parameters, which resemble non-equilibrium phase transitions. Unlike their equilibrium counterparts, these transitions cannot be characterised by conventional statistical physics methods. Here, we study a lattice of square-arranged polariton condensates with nearest-neighbour coupling, and simulate the polarisation (pseudospin) dynamics of the polariton lattice, observing regions with distinct steady-state polarisation patterns. We classify these patterns using machine learning methods and determine the boundaries separating different regions. First, we use unsupervised data mining techniques to sketch the boundaries of phase transitions. We then apply learning by confusion, a neural network-based method for learning labels in a dataset, and extract the polaritonic phase diagram. Our work takes a step towards AI-enabled studies of polaritonic systems.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Machine learning of phase transitions in nonlinear polariton lattices
    Daria Zvyagintseva
    Helgi Sigurdsson
    Valerii K. Kozin
    Ivan Iorsh
    Ivan A. Shelykh
    Vladimir Ulyantsev
    Oleksandr Kyriienko
    Communications Physics, 5
  • [2] Machine learning applications in phase transitions
    Yang YuXiang
    Li Wei
    Shen JianMin
    Wang YanYang
    Tuo Kui
    Xu Dian
    Chen XiangNa
    Ma Fei
    SCIENTIA SINICA-PHYSICA MECHANICA & ASTRONOMICA, 2023, 53 (09)
  • [3] Machine learning of quantum phase transitions
    Dong, Xiao-Yu
    Pollmann, Frank
    Zhang, Xue-Feng
    PHYSICAL REVIEW B, 2019, 99 (12)
  • [4] Unveiling phase transitions with machine learning
    Canabarro, Askery
    Fanchini, Felipe Fernandes
    Malvezzi, Andre Luiz
    Pereira, Rodrigo
    Chaves, Rafael
    PHYSICAL REVIEW B, 2019, 100 (04)
  • [5] Dynamically Emerging Topological Phase Transitions in Nonlinear Interacting Soliton Lattices
    Bongiovanni, Domenico
    Jukic, Dario
    Hu, Zhichan
    Lunic, Frane
    Hu, Yi
    Song, Daohong
    Morandotti, Roberto
    Chen, Zhigang
    Buljan, Hrvoje
    PHYSICAL REVIEW LETTERS, 2021, 127 (18)
  • [6] Machine learning phase transitions with a quantum processor
    Uvarov, A., V
    Kardashin, A. S.
    Biamonte, J. D.
    PHYSICAL REVIEW A, 2020, 102 (01)
  • [7] Machine learning dynamical phase transitions in complex networks
    Ni, Qi
    Tang, Ming
    Liu, Ying
    Lai, Ying-Cheng
    PHYSICAL REVIEW E, 2019, 100 (05)
  • [8] Interpreting machine learning of topological quantum phase transitions
    Zhang, Yi
    Ginsparg, Paul
    Kim, Eun-Ah
    PHYSICAL REVIEW RESEARCH, 2020, 2 (02):
  • [9] Machine learning of phase transitions in the percolation and XY models
    Zhang, Wanzhou
    Liu, Jiayu
    Wei, Tzu-Chieh
    PHYSICAL REVIEW E, 2019, 99 (03)
  • [10] Importance of feature construction in machine learning for phase transitions
    Jang, Inhyuk
    Kaur, Supreet
    Yethiraj, Arun
    JOURNAL OF CHEMICAL PHYSICS, 2022, 157 (09):