Diabetic Retinopathy Images Classification via Multiple Instance Learning

被引:4
|
作者
Vocaturo, Eugenio [1 ,2 ]
Zumpano, Ester [1 ]
机构
[1] Univ Calabria, DIMES, Arcavacata Di Rende, Italy
[2] CNR Natl Res Council, Arcavacata Di Rende, Italy
关键词
Multiple Instance Learning; Diabetic Retinopathy; Diagnostic Support; Image Processing;
D O I
10.1109/CHASE52844.2021.00034
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Diabetic retinopathy (DR) is a complication of diabetes that affects eyes. It is among the primary cause of blindness and low vision and originates from the damage of the blood vessels of the light-sensitive tissue of the retina. The International Diabetes Federation (IDF) [1] estimates that, by 2035, there will be 600 million of person with diabetes, and by 2045 the number will be 700 million. At the present, IDF reports that about 463 million people (1 in 11 adults) worldwide have diabetes and 1.6 million deaths are directly attributed to diabetes each year. Considering the number of patients affected by diabetes worldwide it is straightforward that an affective screening of potential number of patients affected by DR is of paramount importance. While the primary method for evaluating diabetic retinopathy involves direct and indirect ophthalmoscopy, Artificial Intelligent (AI) has been on the rise in the eye care sector. Diabetic Retinopathy can be revealed by analysing fundus photograph data sets of patients and therefore is a disease to which AI tools can provide effective support. In this work we present some preliminary numerical results obtained from classification of eye fundus of healthy people against those of people with severe diabetic retinopathy, by means of Multiple Instance Learning (MIL) algorithm.
引用
收藏
页码:143 / 148
页数:6
相关论文
共 50 条
  • [41] Modified Alexnet architecture for classification of diabetic retinopathy images
    Shanthi, T.
    Sabeenian, R. S.
    COMPUTERS & ELECTRICAL ENGINEERING, 2019, 76 : 56 - 64
  • [42] Automatic Screening and Classification of Diabetic Retinopathy Fundus Images
    Rahim, Sarni Suhaila
    Palade, Vasile
    Shuttleworth, James
    Jayne, Chrisina
    ENGINEERING APPLICATIONS OF NEURAL NETWORKS (EANN 2014), 2014, 459 : 113 - 122
  • [43] Random Forests in the Classification of Diabetic Retinopathy Retinal Images
    Roychowdhury, Amrita
    Banerjee, Sreeparna
    ADVANCED COMPUTATIONAL AND COMMUNICATION PARADIGMS, VOL 1, 2018, 475 : 168 - 176
  • [44] Adaptive machine learning classification for diabetic retinopathy
    Laxmi Math
    Ruksar Fatima
    Multimedia Tools and Applications, 2021, 80 : 5173 - 5186
  • [45] Multiple instance learning for medical image classification based on instance importance
    Struski, Lukasz
    Janusz, Szymon
    Tabor, Jacek
    Markiewicz, Michal
    Lewicki, Arkadiusz
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 91
  • [46] MULTIPLE INSTANCE LEARNING WITH CRITICAL INSTANCE FOR WHOLE SLIDE IMAGE CLASSIFICATION
    Zhou, Yuanpin
    Lu, Yao
    2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,
  • [47] Diabetic Retinopathy Classification Using Deep Learning
    Sathwik A.S.
    Agarwal R.
    Ajith Jubilson E.
    Basa S.S.
    EAI Endorsed Transactions on Pervasive Health and Technology, 2023, 9
  • [48] Adaptive machine learning classification for diabetic retinopathy
    Math, Laxmi
    Fatima, Ruksar
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (04) : 5173 - 5186
  • [49] A Deep Learning Approach to Diabetic Retinopathy Classification
    Oishi, Anika Mehjabin
    Tawfiq-Uz-Zaman, Md
    Emon, Mohammad Billal Hossain
    Momen, Sifat
    CYBERNETICS PERSPECTIVES IN SYSTEMS, VOL 3, 2022, 503 : 417 - 425
  • [50] Self-Supervised Equivariant Regularization Reconciles Multiple-Instance Learning: Joint Referable Diabetic Retinopathy Classification a nd L esion Segmentation
    Zhu, Wenhui
    Qiu, Peijie
    Lepore, Natasha
    Dumitrascu, Oana M.
    Wang, Yalin
    Proceedings of SPIE - The International Society for Optical Engineering, 2023, 12567