Self-Supervised Equivariant Regularization Reconciles Multiple-Instance Learning: Joint Referable Diabetic Retinopathy Classification a nd L esion Segmentation

被引:0
|
作者
Zhu, Wenhui [1 ]
Qiu, Peijie [2 ]
Lepore, Natasha [3 ]
Dumitrascu, Oana M. [4 ]
Wang, Yalin [1 ]
机构
[1] School of Computing and Augmented Intelligence, Arizona State University, AZ,85281, United States
[2] McKeley School of Engineering, Washington University in St. Louis, St. Louis,MO,63130, United States
[3] CIBORG Lab, Department of Radiology Children's Hospital Los Angeles, Los Angeles,CA,90027, United States
[4] Department of Neurology, Mayo Clinic, Scottsdale,AZ,85251, United States
关键词
Compilation and indexing terms; Copyright 2024 Elsevier Inc;
D O I
125670D
中图分类号
学科分类号
摘要
Eye protection - Image segmentation - Learning systems - Medical imaging
引用
收藏
相关论文
共 9 条
  • [1] Self-Supervised Equivariant Regularization Reconciles Multiple-Instance Learning: Joint Referable Diabetic Retinopathy Classification and Lesion Segmentation
    Zhu, Wenhui
    Qiu, Peijie
    Lepore, Natasha
    Dumitrascu, Oana M.
    Wang, Yalin
    18TH INTERNATIONAL SYMPOSIUM ON MEDICAL INFORMATION PROCESSING AND ANALYSIS, 2023, 12567
  • [2] A Self-Supervised Equivariant Refinement Classification Network for Diabetic Retinopathy Classification
    Fan, Jiacheng
    Yang, Tiejun
    Wang, Heng
    Zhang, Huiyao
    Zhang, Wenjie
    Ji, Mingzhu
    Miao, Jianyu
    JOURNAL OF IMAGING INFORMATICS IN MEDICINE, 2024,
  • [3] Self-supervised comparative learning based improved multiple instance learning for whole slide image classification
    Yao, Luhan
    Wang, Hongyu
    Hao, Yingguang
    PROCEEDINGS OF 2023 4TH INTERNATIONAL SYMPOSIUM ON ARTIFICIAL INTELLIGENCE FOR MEDICINE SCIENCE, ISAIMS 2023, 2023, : 1353 - 1357
  • [4] Classification of Diabetic Retinopathy Images Using Multi-Class Multiple-Instance Learning Based on Color Correlogram Features
    Venkatesan, Ragav
    Chandakkar, Parag
    Li, Baoxin
    Li, Helen K.
    2012 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2012, : 1462 - 1465
  • [5] L-Mix: A Latent-Level Instance Mixup Regularization for Robust Self-Supervised Speaker Representation Learning
    Kang, Woo Hyun
    Alam, Jahangir
    Fathan, Abderrahim
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2022, 16 (06) : 1263 - 1272
  • [6] Dual-stream Multiple Instance Learning Network for Whole Slide Image Classification with Self-supervised Contrastive Learning
    Li, Bin
    Li, Yin
    Eliceiri, Kevin W.
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 14313 - 14323
  • [7] Self-supervised retinal thickness prediction enables deep learning from unlabelled data to boost classification of diabetic retinopathy
    Holmberg, Olle G.
    Kohler, Niklas D.
    Martins, Thiago
    Siedlecki, Jakob
    Herold, Tina
    Keidel, Leonie
    Asani, Ben
    Schiefelbein, Johannes
    Priglinger, Siegfried
    Kortuem, Karsten U.
    Theis, Fabian J.
    NATURE MACHINE INTELLIGENCE, 2020, 2 (11) : 719 - 726
  • [8] Self-supervised retinal thickness prediction enables deep learning from unlabelled data to boost classification of diabetic retinopathy
    Olle G. Holmberg
    Niklas D. Köhler
    Thiago Martins
    Jakob Siedlecki
    Tina Herold
    Leonie Keidel
    Ben Asani
    Johannes Schiefelbein
    Siegfried Priglinger
    Karsten U. Kortuem
    Fabian J. Theis
    Nature Machine Intelligence, 2020, 2 : 719 - 726
  • [9] SMIL-DeiT:Multiple Instance Learning and Self-supervised Vision Transformer network for Early Alzheimer's disease classification
    Yin, Yue
    Jin, Weikang
    Bai, Jing
    Liu, Ruotong
    Zhen, Haowei
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,