Formation of a quasi-free-standing graphene with a band gap at the dirac point by Pb atoms intercalation under graphene on Re(0001)

被引:11
|
作者
Estyunin, D. A. [1 ]
Klimovskikh, I. I. [1 ]
Voroshnin, V. Yu. [1 ]
Sostina, D. M. [1 ]
Petaccia, L. [2 ]
Di Santo, G. [2 ]
Shikin, A. M. [1 ]
机构
[1] St Petersburg Univ, St Petersburg 199034, Russia
[2] Elettra Sincrotrone Trieste, I-34149 Trieste, Italy
基金
俄罗斯科学基金会;
关键词
EPITAXIAL GRAPHENE; ELECTRONIC-PROPERTIES; SURFACE; MONOLAYER; FERMIONS; CU(111); GROWTH; AU;
D O I
10.1134/S1063776117100065
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The control of the graphene electronic structure is one of the most important problems in modern condensed matter physics. The graphene monolayer synthesized on the Re(0001) surface and then subjected to the intercalation of Pb atoms is studied by angle-resolved photoelectron spectroscopy and low-energy electron diffraction. The intercalation of Pb atoms under graphene takes place when the substrate is annealed above 500A degrees C. As a result of the intercalation of Pb atoms, graphene becomes quasi-free-standing and a local band gap appears at the Dirac point. The band gap changes with the substrate temperature during the formation of the graphene/Pb/Re(0001) system. The band gap is 0.3 eV at an annealing temperature of 620A degrees C and it increases up to 0.4 eV upon annealing at 830A degrees C. Based on our data, we conclude that the band gap is mainly caused by the hybridization of the graphene pi state with the rhenium 5d states located near the Dirac point of the graphene pi state.
引用
收藏
页码:762 / 767
页数:6
相关论文
共 50 条
  • [31] Effects of two kinds of intercalated In films on quasi-free-standing monolayer graphene formed above SiC(0001)
    Kim, Hidong
    Tsogtbaatar, Nyamaa
    Tuvdendorj, Bolortsetseg
    Lkhagvasuren, Altaibaatar
    Seo, Jae M.
    CARBON, 2020, 159 : 229 - 235
  • [32] Synthesis of quasi-free-standing bilayer graphene nanoribbons on SiC surfaces
    Oliveira, Myriano H., Jr.
    Lopes, Joao Marcelo J.
    Schumann, Timo
    Galves, Lauren A.
    Ramsteiner, Manfred
    Berlin, Katja
    Trampert, Achim
    Riechert, Henning
    NATURE COMMUNICATIONS, 2015, 6
  • [33] Quasi-Free-Standing Bilayer Graphene Hall-Effect Sensor
    Kachniarz, Maciej
    Petruk, Oleg
    Strupinski, Wlodzimierz
    Ciuk, Tymoteusz
    Bienkowski, Adam
    Szewczyk, Roman
    Salach, Jacek
    IEEE TRANSACTIONS ON MAGNETICS, 2019, 55 (01)
  • [34] Quasi-free-standing bilayer graphene nanoribbons probed by electronic transport
    Miccoli, Ilio
    Aprojanz, Johannes
    Baringhaus, Jens
    Lichtenstein, Timo
    Galves, Lauren A.
    Lopes, Joao Marcelo J.
    Tegenkamp, Christoph
    APPLIED PHYSICS LETTERS, 2017, 110 (05)
  • [35] Magnetophonon resonance on the phonon frequency difference in quasi-free-standing graphene
    Zak, D.
    Strupinski, W.
    Ciuk, T.
    Wojnarowska-Nowak, R.
    Sliz, P.
    Tomaka, G.
    Ploch, D.
    Sheregii, E. M.
    PHYSICAL REVIEW B, 2021, 103 (03)
  • [36] Synthesis of quasi-free-standing bilayer graphene nanoribbons on SiC surfaces
    Myriano H. Oliveira, Jr.
    Joao Marcelo J. Lopes
    Timo Schumann
    Lauren A. Galves
    Manfred Ramsteiner
    Katja Berlin
    Achim Trampert
    Henning Riechert
    Nature Communications, 6
  • [37] In Situ Fabrication Of Quasi-Free-Standing Epitaxial Graphene Nanoflakes On Gold
    Leicht, Philipp
    Zielke, Lukas
    Bouvron, Samuel
    Moroni, Riko
    Voloshina, Elena
    Hammerschmidt, Lukas
    Dedkov, Yuriy S.
    Fonin, Mikhail
    ACS NANO, 2014, 8 (04) : 3735 - 3742
  • [38] Thermodynamics and kinetics of Pb intercalation under graphene on SiC (0001)
    Han, Yong
    Kolmer, Marek
    Tringides, Michael C.
    Evans, James W.
    CARBON, 2023, 205 : 336 - 344
  • [39] Self organization of a hexagonal network of quasi-free-standing monolayer graphene nanoribbons
    Murata, Y.
    Takamura, M.
    Kageshima, H.
    Hibino, H.
    PHYSICAL REVIEW B, 2013, 87 (16):
  • [40] Quantum Hall Effect and Carrier Scattering in Quasi-Free-Standing Monolayer Graphene
    Tanabe, Shinichi
    Takamura, Makoto
    Harada, Yuichi
    Kageshima, Hiroyuki
    Hibino, Hiroki
    APPLIED PHYSICS EXPRESS, 2012, 5 (12)