Exponentially fitted Runge-Kutta methods

被引:0
|
作者
Vanden Berghe, G [1 ]
De Meyer, H [1 ]
Van Daele, M [1 ]
Van Hecke, T [1 ]
机构
[1] State Univ Ghent, Dept Appl Math & Comp Sci, B-9000 Ghent, Belgium
关键词
Runge-Kutta method; exponential fitting; ordinary differential equations;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Exponentially fitted Runge-Kutta methods with s stages are constructed, which exactly integrate differential initial-value problems whose solutions are linear combinations of functions of the form {x(j) exp(omegax),x(j) exp(-omegax)}, to (omega is an element of R or iR, j = 0, 1,...,j max), where 0 less than or equal to j max less than or equal to [s/2 - 1], the lower bound being related to explicit methods, the upper bound applicable for collocation methods. Explicit methods with s is an element of {2,3,4} belonging to that class are constructed. For these methods, a study of the local truncation error is made, out of which follows a simple heuristic to estimate the omega -value. Error and step length control is introduced based on Richardson extrapolation ideas. Some numerical experiments show the efficiency of the introduced methods. It is shown that the same techniques can be applied to construct implicit exponentially fitted Runge-Kutta methods. (C) 2000 Elsevier Science B.V. All rights reserved. MSG: 65L05; 65L06; 65L20.
引用
收藏
页码:107 / 115
页数:9
相关论文
共 50 条
  • [31] Exponentially Fitted Symplectic Runge-Kutta-Nystrom Methods
    Monovasilis, Th.
    Kalogiratou, Z.
    Simos, T. E.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2012), VOLS A AND B, 2012, 1479 : 1395 - 1398
  • [32] Revised exponentially fitted Runge-Kutta-Nystrom methods
    D'Ambrosio, R.
    Paternoster, B.
    Santomauro, G.
    APPLIED MATHEMATICS LETTERS, 2014, 30 : 56 - 60
  • [33] Exponentially Fitted Symplectic Runge-Kutta-Nystrom methods
    Monovasilis, Th.
    Kalogiratou, Z.
    Simos, T. E.
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2013, 7 (01): : 81 - 85
  • [34] Construction of Exponentially Fitted Symplectic Runge–Kutta–Nyström Methods from Partitioned Runge–Kutta Methods
    T. Monovasilis
    Z. Kalogiratou
    T. E. Simos
    Mediterranean Journal of Mathematics, 2016, 13 : 2271 - 2285
  • [35] Exponentially Fitted Two-Derivative Runge-Kutta Methods for Simulation of Oscillatory Genetic Regulatory Systems
    Chen, Zhaoxia
    Li, Juan
    Zhang, Ruqiang
    You, Xiong
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2015, 2015
  • [36] Sixth-order symmetric and symplectic exponentially fitted modified Runge-Kutta methods of Gauss type
    Calvo, M.
    Franco, J. M.
    Montijano, J. I.
    Randez, L.
    COMPUTER PHYSICS COMMUNICATIONS, 2008, 178 (10) : 732 - 744
  • [37] Diagonally implicit trigonometrically fitted symplectic Runge-Kutta methods
    Kalogiratou, Z.
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (14) : 7406 - 7412
  • [38] A family of trigonometrically fitted partitioned Runge-Kutta symplectic methods
    Monovasilis, Th.
    Kalogiratou, Z.
    Simos, T. E.
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 209 (01) : 91 - 96
  • [39] Exponentially Fitted and Trigonometrically Fitted Explicit Modified Runge-Kutta Type Methods for Solving y′′′x=fx,y,y′
    Ghawadri N.
    Senu N.
    Ismail F.
    Ibrahim Z.B.
    Senu, N. (norazak@upm.edu.my), 2018, Hindawi Limited (2018)
  • [40] Positivity of Runge-Kutta and diagonally split Runge-Kutta methods
    Horvath, Z
    APPLIED NUMERICAL MATHEMATICS, 1998, 28 (2-4) : 309 - 326