Exponentially fitted Runge-Kutta methods

被引:0
|
作者
Vanden Berghe, G [1 ]
De Meyer, H [1 ]
Van Daele, M [1 ]
Van Hecke, T [1 ]
机构
[1] State Univ Ghent, Dept Appl Math & Comp Sci, B-9000 Ghent, Belgium
关键词
Runge-Kutta method; exponential fitting; ordinary differential equations;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Exponentially fitted Runge-Kutta methods with s stages are constructed, which exactly integrate differential initial-value problems whose solutions are linear combinations of functions of the form {x(j) exp(omegax),x(j) exp(-omegax)}, to (omega is an element of R or iR, j = 0, 1,...,j max), where 0 less than or equal to j max less than or equal to [s/2 - 1], the lower bound being related to explicit methods, the upper bound applicable for collocation methods. Explicit methods with s is an element of {2,3,4} belonging to that class are constructed. For these methods, a study of the local truncation error is made, out of which follows a simple heuristic to estimate the omega -value. Error and step length control is introduced based on Richardson extrapolation ideas. Some numerical experiments show the efficiency of the introduced methods. It is shown that the same techniques can be applied to construct implicit exponentially fitted Runge-Kutta methods. (C) 2000 Elsevier Science B.V. All rights reserved. MSG: 65L05; 65L06; 65L20.
引用
收藏
页码:107 / 115
页数:9
相关论文
共 50 条
  • [11] Construction of Exponentially Fitted Symplectic Runge-Kutta-Nystrom Methods from Partitioned Runge-Kutta Methods
    Monovasilis, T.
    Kalogiratou, Z.
    Simos, T. E.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (04) : 2271 - 2285
  • [12] New embedded explicit pairs of exponentially fitted Runge-Kutta methods
    Paris, A.
    Randez, L.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (03) : 767 - 776
  • [13] Symmetric and symplectic exponentially fitted Runge-Kutta methods of high order
    Calvo, M.
    Franco, J. M.
    Montijano, J. I.
    Randez, L.
    COMPUTER PHYSICS COMMUNICATIONS, 2010, 181 (12) : 2044 - 2056
  • [14] Exponentially-fitted pseudo Runge-Kutta method
    Tiwari, Shruti
    Pandey, Ram K.
    INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2020, 12 (02) : 105 - 116
  • [15] On the generation of P-stable exponentially fitted Runge-Kutta-Nystrom methods by exponentially fitted Runge-Kutta methods (vol 200, pg 778, 2007)
    Van de Vyver, Hans
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 200 (02) : 778 - 779
  • [16] EXPONENTIALLY FITTED TWO-DERIVATIVE RUNGE-KUTTA METHODS FOR THE SCHRODINGER EQUATION
    Fang, Yonglei
    You, Xiong
    Ming, Qinghe
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2013, 24 (10):
  • [17] Diagonally Implicit Exponentially Fitted Runge-Kutta Methods with Equation Dependent Coefficients
    D'Ambrosio, R.
    Paternoster, B.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2012), VOLS A AND B, 2012, 1479 : 1185 - 1188
  • [18] Conditions for Trigonometrically Fitted Runge-Kutta Methods
    Kalogiratou, Z.
    Monovasilis, Th.
    Simos, T. E.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS 1 AND 2, 2009, 1168 : 1600 - +
  • [19] Functionally Fitted Runge-Kutta Methods: A Survey
    Ozawa, Kazufumi
    INFORMATION-AN INTERNATIONAL INTERDISCIPLINARY JOURNAL, 2009, 12 (05): : 949 - 962
  • [20] On the stability of functionally fitted Runge-Kutta methods
    Hoang, Nguyen S.
    Sidje, Roger B.
    BIT NUMERICAL MATHEMATICS, 2008, 48 (01) : 61 - 77