An Aligned Subtree Kernel for Weighted Graphs

被引:0
|
作者
Bai, Lu [1 ]
Rossi, Luca [2 ]
Zhang, Zhihong [3 ]
Hancock, Edwin R. [4 ]
机构
[1] Cent Univ Finance & Econ, Sch Informat, Beijing, Peoples R China
[2] Univ Birmingham, Sch Comp Sci, Birmingham, W Midlands, England
[3] Xiamen Univ, Software Sch, Xiamen, Fujian, Peoples R China
[4] Univ York, Dept Comp Sci, York, N Yorkshire, England
基金
中国国家自然科学基金;
关键词
COMPLEXITY; WALKS; DEPTH;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we develop a new entropic matching kernel for weighted graphs by aligning depth-based representations. We demonstrate that this kernel can be seen as an aligned subtree kernel that incorporates explicit subtree correspondences, and thus addresses the drawback of neglecting the relative locations between substructures that arises in the R-convolution kernels. Experiments on standard datasets demonstrate that our kernel can easily outperform state-of-the-art graph kernels in terms of classification accuracy.
引用
收藏
页码:30 / 39
页数:10
相关论文
共 50 条
  • [41] The bases of weighted graphs
    Alpin, J
    Mubarakzianow, R
    DISCRETE MATHEMATICS, 1997, 175 (1-3) : 1 - 11
  • [42] Decomposing Weighted Graphs
    Ban, Amir
    JOURNAL OF GRAPH THEORY, 2017, 86 (02) : 250 - 254
  • [43] The bases of weighted graphs
    Dept. of Theoretical Cybernetics, Kazan University, ul. Lenina 18, 420008 Kazan, Russia
    Discrete Math, 1-3 (1-11):
  • [44] Weighted dependency graphs
    Feray, Valentin
    ELECTRONIC JOURNAL OF PROBABILITY, 2018, 23
  • [45] On weighted directed graphs
    Bapat, R. B.
    Kalita, D.
    Pati, S.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (01) : 99 - 111
  • [46] Metrization of Weighted Graphs
    Dovgoshey, Oleksiy
    Martio, Olli
    Vuorinen, Matti
    ANNALS OF COMBINATORICS, 2013, 17 (03) : 455 - 476
  • [47] Perfectly Weighted Graphs
    Lawrence Brenton
    Lynda Jaje
    Graphs and Combinatorics, 2001, 17 : 389 - 407
  • [48] MINORS IN WEIGHTED GRAPHS
    Joita, Cezar
    Joita, Daniela
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2008, 77 (03) : 455 - 464
  • [49] Stabilizing Weighted Graphs
    Koh, Zhuan Khye
    Sanita, Laura
    MATHEMATICS OF OPERATIONS RESEARCH, 2020, 45 (04) : 1318 - 1341
  • [50] On the rank of weighted graphs
    Zhang, W. J.
    Yu, A. M.
    LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (03): : 635 - 652