An Aligned Subtree Kernel for Weighted Graphs

被引:0
|
作者
Bai, Lu [1 ]
Rossi, Luca [2 ]
Zhang, Zhihong [3 ]
Hancock, Edwin R. [4 ]
机构
[1] Cent Univ Finance & Econ, Sch Informat, Beijing, Peoples R China
[2] Univ Birmingham, Sch Comp Sci, Birmingham, W Midlands, England
[3] Xiamen Univ, Software Sch, Xiamen, Fujian, Peoples R China
[4] Univ York, Dept Comp Sci, York, N Yorkshire, England
来源
INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37 | 2015年 / 37卷
基金
中国国家自然科学基金;
关键词
COMPLEXITY; WALKS; DEPTH;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we develop a new entropic matching kernel for weighted graphs by aligning depth-based representations. We demonstrate that this kernel can be seen as an aligned subtree kernel that incorporates explicit subtree correspondences, and thus addresses the drawback of neglecting the relative locations between substructures that arises in the R-convolution kernels. Experiments on standard datasets demonstrate that our kernel can easily outperform state-of-the-art graph kernels in terms of classification accuracy.
引用
收藏
页码:30 / 39
页数:10
相关论文
共 50 条
  • [31] LEXICOGRAPHIC PRODUCT OF ALIGNED GRAPHS
    DORFLER, W
    IMRICH, W
    MONATSHEFTE FUR MATHEMATIK, 1972, 76 (01): : 21 - &
  • [32] Center location problems on tree graphs with subtree-shaped customers
    Puerto, J.
    Tamir, A.
    Mesa, J. A.
    Perez-Brito, D.
    DISCRETE APPLIED MATHEMATICS, 2008, 156 (15) : 2890 - 2910
  • [33] Maximum max-k-clique subgraphs in cactus subtree graphs
    Gavril, Fanica
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2023, 15 (06)
  • [34] Solution to a conjecture on the mean subtree order of graphs under edge addition
    Chen, Xiaolin
    Wei, Guangbiao
    Lian, Huishu
    JOURNAL OF GRAPH THEORY, 2023, 104 (03) : 645 - 658
  • [35] Weighted Padovan graphs
    Chenoweth, Vesna Irsic
    Klavzar, Sandi
    Rus, Gregor
    Tan, Elif
    DISCRETE MATHEMATICS, 2025, 348 (07)
  • [36] Inverses of weighted graphs
    Panda, S. K.
    Pati, S.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 532 : 222 - 230
  • [37] Perfectly weighted graphs
    Brenton, L
    Jaje, L
    GRAPHS AND COMBINATORICS, 2001, 17 (03) : 389 - 407
  • [38] Watersheds on weighted graphs
    Meyer, Fernand
    PATTERN RECOGNITION LETTERS, 2014, 47 : 72 - 79
  • [39] Weighted and Labeled Graphs
    Lee, Gilbert
    FORMALIZED MATHEMATICS, 2005, 13 (02): : 279 - 293
  • [40] CYCLES IN WEIGHTED GRAPHS
    BONDY, JA
    FAN, GH
    COMBINATORICA, 1991, 11 (03) : 191 - 205