Multitask Learning With Recurrent Neural Networks for Acute Respiratory Distress Syndrome Prediction Using Only Electronic Health Record Data: Model Development and Validation Study

被引:8
|
作者
Lam, Carson [1 ]
Thapa, Rahul [1 ]
Maharjan, Jenish [1 ]
Rahmani, Keyvan [1 ]
Tso, Chak Foon [1 ]
Singh, Navan Preet [1 ]
Chetty, Satish Casie [1 ]
Mao, Qingqing [1 ]
机构
[1] Dascena Inc, 12333 Sowden Rd,Suite B, Houston, TX 77080 USA
关键词
deep learning; neural networks; ARDS; health care; multitask learning; clinical decision support; prediction model; COVID-19; electronic health record; risk outcome; respiratory distress; diagnostic criteria; recurrent neural network; EARLY IDENTIFICATION; VENTILATION; CRITERIA; SCORE; RISK;
D O I
10.2196/36202
中图分类号
R-058 [];
学科分类号
摘要
Background: Acute respiratory distress syndrome (ARDS) is a condition that is often considered to have broad and subjective diagnostic criteria and is associated with significant mortality and morbidity. Early and accurate prediction of ARDS and related conditions such as hypoxemia and sepsis could allow timely administration of therapies, leading to improved patient outcomes. Objective: The aim of this study is to perform an exploration of how multilabel classification in the clinical setting can take advantage of the underlying dependencies between ARDS and related conditions to improve early prediction of ARDS in patients. Methods: The electronic health record data set included 40,703 patient encounters from 7 hospitals from April 20, 2018, to March 17, 2021. A recurrent neural network (RNN) was trained using data from 5 hospitals, and external validation was conducted on data from 2 hospitals. In addition to ARDS, 12 target labels for related conditions such as sepsis, hypoxemia, and COVID-19 were used to train the model to classify a total of 13 outputs. As a comparator, XGBoost models were developed for each of the 13 target labels. Model performance was assessed using the area under the receiver operating characteristic curve. Heat maps to visualize attention scores were generated to provide interpretability to the neural networks. Finally, cluster analysis was performed to identify potential phenotypic subgroups of patients with ARDS. Results: The single RNN model trained to classify 13 outputs outperformed the individual XGBoost models for ARDS prediction, achieving an area under the receiver operating characteristic curve of 0.842 on the external test sets. Models trained on an increasing number of tasks resulted in improved performance. Earlier prediction of ARDS nearly doubled the rate of in-hospital survival. Cluster analysis revealed distinct ARDS subgroups, some of which had similar mortality rates but different clinical presentations. Conclusions: The RNN model presented in this paper can be used as an early warning system to stratify patients who are at risk of developing one of the multiple risk outcomes, hence providing practitioners with the means to take early action.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Identifying future high healthcare utilization in patients with multimorbidity – development and internal validation of machine learning prediction models using electronic health record data
    Liann I. Weil
    Leslie R. Zwerwer
    Hung Chu
    Marlies Verhoeff
    Patrick P.T. Jeurissen
    Barbara C. van Munster
    Health and Technology, 2024, 14 : 433 - 449
  • [32] Clinical Prediction Models for Hospital-Induced Delirium Using Structured and Unstructured Electronic Health Record Data: Protocol for a Development and Validation Study
    Ser, Sarah E.
    Shear, Kristen
    Snigurska, Urszula A.
    Prosperi, Mattia
    Wu, Yonghui
    Magoc, Tanja
    Bjarnadottir, Ragnhildur, I
    Lucero, Robert J.
    JMIR RESEARCH PROTOCOLS, 2023, 12
  • [33] Development and internal validation of prediction models for future hospital care utilization by patients with multimorbidity using electronic health record data
    Verhoeff, Marlies
    de Groot, Janke
    Burgers, Jako S.
    van Munster, Barbara C.
    PLOS ONE, 2022, 17 (03):
  • [34] Prediction of acute kidney injury after cardiac surgery: model development using a Chinese electronic health record dataset
    Hang Zhang
    Zhongtian Wang
    Yingdan Tang
    Xin Chen
    Dongfang You
    Yaqian Wu
    Min Yu
    Wen Chen
    Yang Zhao
    Xin Chen
    Journal of Translational Medicine, 20
  • [35] Prediction of acute kidney injury after cardiac surgery: model development using a Chinese electronic health record dataset
    Zhang, Hang
    Wang, Zhongtian
    Tang, Yingdan
    Chen, Xin
    You, Dongfang
    Wu, Yaqian
    Yu, Min
    Chen, Wen
    Zhao, Yang
    Chen, Xin
    JOURNAL OF TRANSLATIONAL MEDICINE, 2022, 20 (01)
  • [36] Prediction of Drug-Induced Long QT Syndrome Using Machine Learning Applied to Harmonized Electronic Health Record Data
    Simon, Steven T.
    Mandair, Divneet
    Tiwari, Premanand
    Rosenberg, Michael A.
    JOURNAL OF CARDIOVASCULAR PHARMACOLOGY AND THERAPEUTICS, 2021, 26 (04) : 335 - 340
  • [37] Development and validation of machine learning models to predict MDRO colonization or infection on ICU admission by using electronic health record data
    Li, Yun
    Cao, Yuan
    Wang, Min
    Wang, Lu
    Wu, Yiqi
    Fang, Yuan
    Zhao, Yan
    Fan, Yong
    Liu, Xiaoli
    Liang, Hong
    Yang, Mengmeng
    Yuan, Rui
    Zhou, Feihu
    Zhang, Zhengbo
    Kang, Hongjun
    ANTIMICROBIAL RESISTANCE AND INFECTION CONTROL, 2024, 13 (01):
  • [38] Combining chest X-rays and electronic health record (EHR) data using machine learning to diagnose acute respiratory failure
    Jabbour, Sarah
    Fouhey, David
    Kazerooni, Ella
    Wiens, Jenna
    Sjoding, Michael W.
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2022, 29 (06) : 1060 - 1068
  • [39] Development of a Machine Learning Model Using Electronic Health Record Data to Identify Antibiotic Use Among Hospitalized Patients
    Moehring, Rebekah W.
    Phelan, Matthew
    Lofgren, Eric
    Nelson, Alicia
    Dodds Ashley, Elizabeth
    Anderson, Deverick J.
    Goldstein, Benjamin A.
    JAMA NETWORK OPEN, 2021, 4 (03)
  • [40] Prognostic Prediction Using the Clinical Data and Ultrasomics-Based Model in Acute Respiratory Distress Syndrome (ARDS) Combined with Acute Kidney Injury (AKI)
    Cai, Xing
    Li, Jing
    Qin, Ping
    An, Peng
    Yang, Hao
    Zuo, MingYan
    Wang, Jinsong
    INTERNATIONAL JOURNAL OF CLINICAL PRACTICE, 2022, 2022