Clinical Prediction Models for Hospital-Induced Delirium Using Structured and Unstructured Electronic Health Record Data: Protocol for a Development and Validation Study

被引:1
|
作者
Ser, Sarah E. [1 ,2 ,7 ,8 ]
Shear, Kristen [3 ]
Snigurska, Urszula A. [3 ]
Prosperi, Mattia [1 ,2 ]
Wu, Yonghui [4 ]
Magoc, Tanja [5 ]
Bjarnadottir, Ragnhildur, I [3 ]
Lucero, Robert J. [3 ,6 ]
机构
[1] Univ Florida, Coll Publ Hlth & Hlth Profess, Dept Epidemiol, Gainesville, FL USA
[2] Univ Florida, Coll Med, Gainesville, FL USA
[3] Univ Florida, Coll Nursing, Dept Family Community & Hlth Syst Sci, Gainesville, FL USA
[4] Univ Florida, Coll Med, Dept Hlth Outcomes & Biomed Informat, Gainesville, FL USA
[5] Univ Florida, Integrated Data Repository Res Serv, Gainesville, FL USA
[6] Univ Calif Los Angeles, Sch Nursing, Los Angeles, CA USA
[7] Univ Florida, Coll Publ Hlth & Hlth Profess, Dept Epidemiol, 2004 Mowry Rd, Gainesville, FL 32610 USA
[8] Univ Florida, Coll Med, 2004 Mowry Rd, Gainesville, FL 32610 USA
来源
JMIR RESEARCH PROTOCOLS | 2023年 / 12卷
基金
美国国家卫生研究院;
关键词
big data; machine learning; data science; hospital-acquired condition; hospital induced; hospital acquired; predict; predictive; prediction; model; models; natural language processing; risk factors; delirium; risk; unstructured; structured; free text; clinical text; text data; RISK PREDICTION; TEXT; CHALLENGES; DIAGNOSIS; FALLS;
D O I
10.2196/48521
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Background: Hospital-induced delirium is one of the most common and costly iatrogenic conditions, and its incidence is predicted to increase as the population of the United States ages. An academic and clinical interdisciplinary systems approach is needed to reduce the frequency and impact of hospital-induced delirium.Objective: The long-term goal of our research is to enhance the safety of hospitalized older adults by reducing iatrogenic conditions through an effective learning health system. In this study, we will develop models for predicting hospital-induced delirium. In order to accomplish this objective, we will create a computable phenotype for our outcome (hospital-induced delirium), design an expert-based traditional logistic regression model, leverage machine learning techniques to generate a model using structured data, and use machine learning and natural language processing to produce an integrated model with components from both structured data and text data.Methods: This study will explore text-based data, such as nursing notes, to improve the predictive capability of prognostic models for hospital-induced delirium. By using supervised and unsupervised text mining in addition to structured data, we will examine multiple types of information in electronic health record data to predict medical-surgical patient risk of developing delirium. Development and validation will be compliant to the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) statement.Results: Work on this project will take place through March 2024. For this study, we will use data from approximately 332,230 encounters that occurred between January 2012 to May 2021. Findings from this project will be disseminated at scientific conferences and in peer-reviewed journals.Conclusions: Success in this study will yield a durable, high-performing research-data infrastructure that will process, extract, and analyze clinical text data in near real time. This model has the potential to be integrated into the electronic health record and provide point-of-care decision support to prevent harm and improve quality of care.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Development and internal validation of prediction models for future hospital care utilization by patients with multimorbidity using electronic health record data
    Verhoeff, Marlies
    de Groot, Janke
    Burgers, Jako S.
    van Munster, Barbara C.
    PLOS ONE, 2022, 17 (03):
  • [2] Postoperative delirium prediction using machine learning models and preoperative electronic health record data
    Andrew Bishara
    Catherine Chiu
    Elizabeth L. Whitlock
    Vanja C. Douglas
    Sei Lee
    Atul J. Butte
    Jacqueline M. Leung
    Anne L. Donovan
    BMC Anesthesiology, 22
  • [3] Postoperative delirium prediction using machine learning models and preoperative electronic health record data
    Bishara, Andrew
    Chiu, Catherine
    Whitlock, Elizabeth L.
    Douglas, Vanja C.
    Lee, Sei
    Butte, Atul J.
    Leung, Jacqueline M.
    Donovan, Anne L.
    BMC ANESTHESIOLOGY, 2022, 22 (01)
  • [4] External Validation of Postpartum Hemorrhage Prediction Models Using Electronic Health Record Data
    Meyer, Sean R.
    Carver, Alissa
    Joo, Hyeon
    Venkatesh, Kartik K.
    Jelovsek, J. Eric
    Klumpner, Thomas T.
    Singh, Karandeep
    AMERICAN JOURNAL OF PERINATOLOGY, 2024, 41 (05) : 598 - 605
  • [5] Targeted Development and Validation of Clinical Prediction Models in Secondary Care Settings: Opportunities and Challenges for Electronic Health Record Data
    van Maurik, I. S.
    Doodeman, H. J.
    Veeger-Nuijens, B. W.
    Mohringer, R. P. M.
    Sudion, D. R.
    Jongbloed, W.
    van Soelen, E.
    JMIR MEDICAL INFORMATICS, 2024, 12
  • [6] Predicting Publication of Clinical Trials Using Structured and Unstructured Data: Model Development and Validation Study
    Wang, Siyang
    Suster, Simon
    Baldwin, Timothy
    Verspoor, Karin
    JOURNAL OF MEDICAL INTERNET RESEARCH, 2022, 24 (12)
  • [7] Application of a practice-based approach in variable selection for a prediction model development study of hospital-induced delirium
    Urszula A. Snigurska
    Sarah E. Ser
    Laurence M. Solberg
    Mattia Prosperi
    Tanja Magoc
    Zhaoyi Chen
    Jiang Bian
    Ragnhildur I. Bjarnadottir
    Robert J. Lucero
    BMC Medical Informatics and Decision Making, 23
  • [8] Application of a practice-based approach in variable selection for a prediction model development study of hospital-induced delirium
    Snigurska, Urszula A.
    Ser, Sarah E.
    Solberg, Laurence M.
    Prosperi, Mattia
    Magoc, Tanja
    Chen, Zhaoyi
    Bian, Jiang
    Bjarnadottir, Ragnhildur I.
    Lucero, Robert J.
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2023, 23 (01)
  • [9] Development and validation of an asthma exacerbation prediction model using electronic health record (EHR) data
    Martin, Alfred
    Bauer, Victoria
    Datta, Avisek
    Masi, Christopher
    Mosnaim, Giselle
    Solomonides, Anthony
    Rao, Goutham
    JOURNAL OF ASTHMA, 2020, 57 (12) : 1339 - 1346
  • [10] Ascertainment of Aspirin Exposure Using Structured and Unstructured Large-scale Electronic Health Record Data
    Bustamante, Ranier
    Earles, Ashley
    Murphy, James D.
    Bryant, Alex K.
    Patterson, Olga V.
    Gawron, Andrew J.
    Kaltenbach, Tonya
    Whooley, Mary A.
    Fisher, Deborah A.
    Saini, Sameer D.
    Gupta, Samir
    Liu, Lin
    MEDICAL CARE, 2019, 57 (10) : E60 - E64