Acyclic edge coloring of planar graphs with Δ colors

被引:6
|
作者
Hudak, David [2 ]
Kardos, Frantisek [2 ]
Luzar, Borut [1 ]
Sotak, Roman [2 ]
Skrekovski, Riste [3 ]
机构
[1] Inst Math Phys & Mech, Ljubljana, Slovenia
[2] Pavol Jozef Safarik Univ, Fac Sci, Inst Math, Kosice, Slovakia
[3] Univ Ljubljana, Fac Math & Phys, Dept Math, Ljubljana 61000, Slovenia
关键词
Acyclic edge coloring; Planar graph; Discharging method;
D O I
10.1016/j.dam.2012.01.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An acyclic edge coloring of a graph is a proper edge coloring without bichromatic cycles. In 1978, it was conjectured that Delta(G) + 2 colors suffice for an acyclic edge coloring of every graph G (Fiamcik, 1978 [8]). The conjecture has been verified for several classes of graphs, however, the best known upper bound for as special class as planar graphs are, is Delta + 12 (Basavaraju and Chandran, 2009[3]). In this paper, we study simple planar graphs which need only Delta(G) colors for an acyclic edge coloring. We show that a planar graph with girth g and maximum degree Delta admits such acyclic edge coloring if g >= 12, or g >= 8 and Delta >= 4, or g >= 7 and Delta >= 5, or g >= 6 and Delta >= 6, org >= 5 and Delta >= 10. Our results improve some previously known bounds. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:1356 / 1368
页数:13
相关论文
共 50 条
  • [21] Acyclic edge coloring of graphs
    Wang, Tao
    Zhang, Yaqiong
    DISCRETE APPLIED MATHEMATICS, 2014, 167 : 290 - 303
  • [22] Acyclic edge coloring of planar graphs without 4-cycles
    Wang, Weifan
    Shu, Qiaojun
    Wang, Yiqiao
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2013, 25 (04) : 562 - 586
  • [23] Acyclic edge coloring of planar graphs without cycles of specific lengths
    Gao Y.
    Yu D.
    Journal of Applied Mathematics and Computing, 2011, 37 (1-2) : 533 - 540
  • [24] Acyclic edge coloring of planar graphs without 5-cycles
    Shu, Qiaojun
    Wang, Weifan
    Wang, Yiqiao
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (7-8) : 1211 - 1223
  • [25] Acyclic edge coloring of planar graphs without a -cycle adjacent to a -cycle
    Wang, Yiqiao
    Shu, Qiaojun
    Wu, Jian-Liang
    Zhang, Wenwen
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2014, 28 (03) : 692 - 715
  • [26] Acyclic edge coloring of planar graphs without 4-cycles
    Weifan Wang
    Qiaojun Shu
    Yiqiao Wang
    Journal of Combinatorial Optimization, 2013, 25 : 562 - 586
  • [27] AN EFFICIENT ALGORITHM FOR EDGE COLORING PLANAR GRAPHS WITH DELTA-COLORS
    HE, X
    THEORETICAL COMPUTER SCIENCE, 1990, 74 (03) : 299 - 312
  • [28] STAR COLORING AND ACYCLIC COLORING OF LOCALLY PLANAR GRAPHS
    Kawarabayashi, Ken-ichi
    Mohar, Bojan
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2010, 24 (01) : 56 - 71
  • [29] On acyclic edge coloring of toroidal graphs
    Xu, Yian
    INFORMATION PROCESSING LETTERS, 2011, 111 (13) : 647 - 649
  • [30] Acyclic List Edge Coloring of Graphs
    Lai, Hsin-Hao
    Lih, Ko-Wei
    JOURNAL OF GRAPH THEORY, 2013, 72 (03) : 247 - 266