Constructing tilting modules

被引:0
|
作者
Kerner, Otto [1 ]
Trlifaj, Jan [2 ]
机构
[1] Univ Dusseldorf, Math Inst, D-40225 Dusseldorf, Germany
[2] Charles Univ Prague, Fac Math & Phys, Dept Algebra, Prague 18675 8, Czech Republic
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the structure of (infinite dimensional) tilting modules over hereditary artin algebras. For connected algebras of infinite representation type with Grothendieck group of rank n, we prove that for each 0 = i < n - 1, there is an infinite dimensional tilting module T-i with exactly i pairwise non-isomorphic indecomposable finite dimensional direct summands. We also show that any stone is a direct summand in a tilting module. In the final section, we give explicit constructions of infinite dimensional tilting modules over iterated one-point extensions.
引用
收藏
页码:1907 / 1925
页数:19
相关论文
共 50 条