SEPARATING TILTING MODULES

被引:0
|
作者
章璞
机构
[1] PRC University of Science and Technology of china.Hefei 230026
[2] Beijing 100875
[3] Beijing Normal University
[4] Department of Mathematics
基金
中国国家自然科学基金;
关键词
separating tilting module; hereditary algebra; one-point extension;
D O I
暂无
中图分类号
学科分类号
摘要
Let A be a basic, connected and finite-dimensional algebra over an algebraically closed field k. A tilting module A~T is called separating if the torsion theory (F(A~T), G(A~T)) induced by A~T is splitting in A-mod, i. e. any indecomposable module A~M belongs either to F(A~T) or to G(A~T). In this note we prove the following main result by using the representation theory of representation-infinite hereditary algebra.
引用
收藏
页码:975 / 978
页数:4
相关论文
共 50 条