Tilting modules;
Tilting mutations;
Representations of quivers;
16G20;
16D80;
06A07;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
C. Ingalls and H. Thomas defined support tilting modules for path algebras. From τ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\tau $$\end{document}-tilting theory introduced by T. Adachi, O. Iyama and I. Reiten, a partial order on the set of basic tilting modules defined by D. Happel and L. Unger is extended as a partial order on the set of support tilting modules. In this paper, we study a combinatorial relationship between the poset of basic tilting modules and basic support tilting modules. We will show that the subposet of tilting modules is uniquely determined by the poset structure of the set of support tilting modules.
机构:
Jiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Jiangsu, Peoples R ChinaJiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Jiangsu, Peoples R China
机构:
China Foreign Affairs Univ, Dept Int Econ, Beijing 100037, Peoples R ChinaChina Foreign Affairs Univ, Dept Int Econ, Beijing 100037, Peoples R China
Hu, Yonggang
Zhou, Panyue
论文数: 0引用数: 0
h-index: 0
机构:
Changsha Univ Sci & Technol, Sch Math & Stat, Changsha 410114, Peoples R ChinaChina Foreign Affairs Univ, Dept Int Econ, Beijing 100037, Peoples R China
机构:
Tokyo Univ Sci, Dept Math, 1-3 Kagurazaka,Shinjuku Ku, Tokyo 1628601, JapanTokyo Univ Sci, Dept Math, 1-3 Kagurazaka,Shinjuku Ku, Tokyo 1628601, Japan