Predicting Diabetes Mellitus With Machine Learning Techniques

被引:343
|
作者
Zou, Quan [1 ,2 ]
Qu, Kaiyang [1 ]
Luo, Yamei [3 ]
Yin, Dehui [3 ]
Ju, Ying [4 ]
Tang, Hua [5 ]
机构
[1] Tianjin Univ, Sch Comp Sci & Technol, Tianjin, Peoples R China
[2] Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Chengdu, Sichuan, Peoples R China
[3] Southwest Med Univ, Sch Med Informat & Engn, Luzhou, Peoples R China
[4] Xiamen Univ, Sch Informat Sci & Technol, Xiamen, Peoples R China
[5] Southwest Med Univ, Sch Basic Med, Dept Pathophysiol, Luzhou, Peoples R China
关键词
diabetes mellitus; random forest; decision tree; neural network; machine learning; feature ranking; RANDOM FOREST; FEATURE-SELECTION; DIAGNOSIS; CLASSIFICATION; EXTRACTION; TOOL;
D O I
10.3389/fgene.2018.00515
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Diabetes mellitus is a chronic disease characterized by hyperglycemia. It may cause many complications. According to the growing morbidity in recent years, in 2040, the world's diabetic patients will reach 642 million, which means that one of the ten adults in the future is suffering from diabetes. There is no doubt that this alarming figure needs great attention. With the rapid development of machine learning, machine learning has been applied to many aspects of medical health. In this study, we used decision tree, random forest and neural network to predict diabetes mellitus. The dataset is the hospital physical examination data in Luzhou, China. It contains 14 attributes. In this study, five-fold cross validation was used to examine the models. In order to verity the universal applicability of the methods, we chose some methods that have the better performance to conduct independent test experiments. We randomly selected 68994 healthy people and diabetic patients' data, respectively as training set. Due to the data unbalance, we randomly extracted 5 times data. And the result is the average of these five experiments. In this study, we used principal component analysis (PCA) and minimum redundancy maximum relevance (mRMR) to reduce the dimensionality. The results showed that prediction with random forest could reach the highest accuracy (ACC = 0.8084) when all the attributes were used.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] A Comparison of Feature Selection and Forecasting Machine Learning Algorithms for Predicting Glycaemia in Type 1 Diabetes Mellitus
    Rodriguez-Rodriguez, Ignacio
    Rodriguez, Jose-Victor
    Woo, Wai Lok
    Wei, Bo
    Pardo-Quiles, Domingo-Javier
    APPLIED SCIENCES-BASEL, 2021, 11 (04): : 1 - 20
  • [42] Machine learning and balanced techniques for diabetes prediction
    Narvaez, Liliana
    Reategui, Ruth
    2023 FOURTH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS AND SOFTWARE TECHNOLOGIES, ICI2ST 2023, 2023, : 68 - 73
  • [43] Diabetes Classification Using Machine Learning Techniques
    Phongying, Methaporn
    Hiriote, Sasiprapa
    COMPUTATION, 2023, 11 (05)
  • [44] Diabetes Prediction using Machine Learning Techniques
    Obulesu, O.
    Suresh, K.
    Ramudu, B. Venkata
    HELIX, 2020, 10 (02): : 136 - 142
  • [45] Futuristic Machine Learning Techniques for Diabetes Detection
    Panakanti, Pavan Kumar
    Porika, Sammulal
    Yadav, S. K.
    JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES, 2019, 14 (05): : 487 - 500
  • [46] Diagnosis of Diabetes Mellitus Using Extreme Learning Machine
    Pangaribuan, Jefri Junifer
    Suharjito
    2014 INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY SYSTEMS AND INNOVATION (ICITSI), 2014, : 33 - 38
  • [47] Preemptive Diagnosis of Diabetes Mellitus Using Machine Learning
    Alassaf, Reem A.
    Alsulaim, Khawla A.
    Alroomi, Noura Y.
    Alsharif, Nouf S.
    Aljubeir, Mishael F.
    Olatunji, Sunday O.
    Alahmadi, Alaa Y.
    Imran, Mohammed
    Alzahrani, Rahma A.
    Alturayeif, Nora S.
    2018 21ST SAUDI COMPUTER SOCIETY NATIONAL COMPUTER CONFERENCE (NCC), 2018,
  • [48] Detection of Risk Factors for Diabetes Mellitus with Machine Learning
    Vidal, Mireya Tovar
    Gordillo, Juan Manuel Cancino
    INTERNATIONAL JOURNAL OF COMBINATORIAL OPTIMIZATION PROBLEMS AND INFORMATICS, 2023, 14 (01): : 66 - 75
  • [49] Classification of Diabetes Mellitus Disease using Machine Learning
    Mohamed, Mahmoud Adnan
    Nassif, Ali Bou
    Al-Shabi, Mohammad
    SMART BIOMEDICAL AND PHYSIOLOGICAL SENSOR TECHNOLOGY XIX, 2022, 12123
  • [50] Predictive Supervised Machine Learning Models for Diabetes Mellitus
    Muhammad L.J.
    Algehyne E.A.
    Usman S.S.
    SN Computer Science, 2020, 1 (5)