Predicting Diabetes Mellitus With Machine Learning Techniques

被引:343
|
作者
Zou, Quan [1 ,2 ]
Qu, Kaiyang [1 ]
Luo, Yamei [3 ]
Yin, Dehui [3 ]
Ju, Ying [4 ]
Tang, Hua [5 ]
机构
[1] Tianjin Univ, Sch Comp Sci & Technol, Tianjin, Peoples R China
[2] Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Chengdu, Sichuan, Peoples R China
[3] Southwest Med Univ, Sch Med Informat & Engn, Luzhou, Peoples R China
[4] Xiamen Univ, Sch Informat Sci & Technol, Xiamen, Peoples R China
[5] Southwest Med Univ, Sch Basic Med, Dept Pathophysiol, Luzhou, Peoples R China
关键词
diabetes mellitus; random forest; decision tree; neural network; machine learning; feature ranking; RANDOM FOREST; FEATURE-SELECTION; DIAGNOSIS; CLASSIFICATION; EXTRACTION; TOOL;
D O I
10.3389/fgene.2018.00515
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Diabetes mellitus is a chronic disease characterized by hyperglycemia. It may cause many complications. According to the growing morbidity in recent years, in 2040, the world's diabetic patients will reach 642 million, which means that one of the ten adults in the future is suffering from diabetes. There is no doubt that this alarming figure needs great attention. With the rapid development of machine learning, machine learning has been applied to many aspects of medical health. In this study, we used decision tree, random forest and neural network to predict diabetes mellitus. The dataset is the hospital physical examination data in Luzhou, China. It contains 14 attributes. In this study, five-fold cross validation was used to examine the models. In order to verity the universal applicability of the methods, we chose some methods that have the better performance to conduct independent test experiments. We randomly selected 68994 healthy people and diabetic patients' data, respectively as training set. Due to the data unbalance, we randomly extracted 5 times data. And the result is the average of these five experiments. In this study, we used principal component analysis (PCA) and minimum redundancy maximum relevance (mRMR) to reduce the dimensionality. The results showed that prediction with random forest could reach the highest accuracy (ACC = 0.8084) when all the attributes were used.
引用
下载
收藏
页数:10
相关论文
共 50 条
  • [21] Diabetes Mellitus Affected Patients Classification and Diagnosis through Machine Learning Techniques
    Mercaldo, Francesco
    Nardone, Vittoria
    Santone, Antonella
    KNOWLEDGE-BASED AND INTELLIGENT INFORMATION & ENGINEERING SYSTEMS, 2017, 112 : 2519 - 2528
  • [22] Early diagnosis of diabetes mellitus using data mining and machine learning techniques
    Deepa, K.
    Kumar, C. Ranjeeth
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 44 (03) : 3999 - 4011
  • [23] Utilizing Various Machine Learning Techniques for Diabetes Mellitus Feature Selection and Classification
    Sheta, Alaa
    Elashmawi, Walaa H.
    Al-Qerem, Ahmad
    Othman, Emad S.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (03) : 1372 - 1384
  • [24] A Predictive Model for Diabetes Mellitus Using Machine Learning Techniques (A Study in Nigeria)
    Evwiekpaefe, Abraham Eseoghene
    Abdulkadir, Nafisat
    AFRICAN JOURNAL OF INFORMATION SYSTEMS, 2023, 15 (01):
  • [25] An Analysis of various Machine Learning Techniques for Predicting Diabetes in its Early Stages
    Durga, P.
    Sudhakar, T.
    JOURNAL OF PHARMACEUTICAL NEGATIVE RESULTS, 2022, 13 : 2030 - 2038
  • [26] Comparison of Statistical Logistic Regression and RandomForest Machine Learning Techniques in Predicting Diabetes
    Daghistani, Tahani
    Alshammari, Riyad
    JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, 2020, 11 (02) : 78 - 83
  • [27] Glycemic and lipid variability for predicting complications and mortality in diabetes mellitus using machine learning
    Sharen Lee
    Jiandong Zhou
    Wing Tak Wong
    Tong Liu
    William K. K. Wu
    Ian Chi Kei Wong
    Qingpeng Zhang
    Gary Tse
    BMC Endocrine Disorders, 21
  • [28] Glycemic and lipid variability for predicting complications and mortality in diabetes mellitus using machine learning
    Lee, Sharen
    Zhou, Jiandong
    Wong, Wing Tak
    Liu, Tong
    Wu, William K. K.
    Wong, Ian Chi Kei
    Zhang, Qingpeng
    Tse, Gary
    BMC ENDOCRINE DISORDERS, 2021, 21 (01)
  • [29] Non-invasive Diabetes Mellitus Detection System using Machine Learning Techniques
    Prabha, Anju
    Yadav, Jyoti
    Rani, Asha
    Singh, Vijander
    2021 11TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING, DATA SCIENCE & ENGINEERING (CONFLUENCE 2021), 2021, : 948 - 953
  • [30] Metabolic Syndrome and Development of Diabetes Mellitus: Predictive Modeling Based on Machine Learning Techniques
    Perveen, Sajida
    Shahbaz, Muhammad
    Keshavjee, Karim
    Guergachi, Aziz
    IEEE ACCESS, 2019, 7 : 1365 - 1375