A unified approach to superresolution and multichannel blind deconvolution

被引:89
|
作者
Sroubek, Filip
Cristobal, Gabriel
Flusser, Jan
机构
[1] Acad Sci Czech Republ, Inst Informat Theory & Automat, Prague 18208 8, Czech Republic
[2] CSIC, Inst Opt, Madrid 28006, Spain
关键词
image restoration; multichannel blind deconvolution; regularized energy minimization; resolution enhancement; superresolution;
D O I
10.1109/TIP.2007.903256
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a new approach to the blind deconvolution and superresolution problem of multiple degraded low-resolution frames of the original scene. We do not assume any prior information about the shape of degradation blurs. The proposed approach consists of building a regularized energy function and minimizing it with respect to the original image and blurs, where regularization is carried out in both the image and blur domains. The image regularization based on variational principles maintains stable performance under severe noise corruption. The blur regularization guarantees consistency of the solution by exploiting differences among the acquired low-resolution images. Several experiments on synthetic and real data illustrate the robustness and utilization of the proposed technique in real applications.
引用
收藏
页码:2322 / 2332
页数:11
相关论文
共 50 条
  • [31] A New Look to Multichannel Blind Image Deconvolution
    Souidene, Wided
    Abed-Meraim, Karim
    Beghdadi, Azeddine
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2009, 18 (07) : 1487 - 1500
  • [32] Multichannel blind deconvolution of spatially misaligned images
    Sroubek, F
    Flusser, J
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2005, 14 (07) : 874 - 883
  • [33] Deterministic teciiniques for multichannel blind image deconvolution
    Souidene, W
    Abed-Meraim, K
    Beghdadi, A
    ISSPA 2005: THE 8TH INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND ITS APPLICATIONS, VOLS 1 AND 2, PROCEEDINGS, 2005, : 439 - 442
  • [34] Generalized quadratic minimization and blind multichannel deconvolution
    Gorokhov, A
    Stoica, P
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2000, 48 (01) : 201 - 213
  • [35] Multichannel blind deconvolution of transient impulsive signals
    Lecumberri, P.
    Gomez, M.
    Carlosena, A.
    2006 IEEE INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE PROCEEDINGS, VOLS 1-5, 2006, : 1145 - +
  • [36] SUB-NYQUIST MULTICHANNEL BLIND DECONVOLUTION
    Mulleti, Satish
    Lee, Kiryung
    Eldar, Yonina C.
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 5454 - 5458
  • [37] Identifiability Conditions for Compressive Multichannel Blind Deconvolution
    Mulleti, Satish
    Lee, Kiryung
    Eldar, Yonina C.
    IEEE Transactions on Signal Processing, 2020, 68 : 4627 - 4642
  • [38] A fast algorithm for sparse multichannel blind deconvolution
    Nose-Filho, Kenji
    Takahata, Andre K.
    Lopes, Renato
    Romano, Joao M. T.
    GEOPHYSICS, 2016, 81 (01) : V7 - V16
  • [39] Identifiability Conditions for Compressive Multichannel Blind Deconvolution
    Mulleti, Satish
    Lee, Kiryung
    Eldar, Yonina C.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 : 4627 - 4642
  • [40] Cascade neural networks for multichannel blind deconvolution
    Choi, S
    Cichocki, A
    ELECTRONICS LETTERS, 1998, 34 (12) : 1186 - 1187