A unified approach to superresolution and multichannel blind deconvolution

被引:89
|
作者
Sroubek, Filip
Cristobal, Gabriel
Flusser, Jan
机构
[1] Acad Sci Czech Republ, Inst Informat Theory & Automat, Prague 18208 8, Czech Republic
[2] CSIC, Inst Opt, Madrid 28006, Spain
关键词
image restoration; multichannel blind deconvolution; regularized energy minimization; resolution enhancement; superresolution;
D O I
10.1109/TIP.2007.903256
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a new approach to the blind deconvolution and superresolution problem of multiple degraded low-resolution frames of the original scene. We do not assume any prior information about the shape of degradation blurs. The proposed approach consists of building a regularized energy function and minimizing it with respect to the original image and blurs, where regularization is carried out in both the image and blur domains. The image regularization based on variational principles maintains stable performance under severe noise corruption. The blur regularization guarantees consistency of the solution by exploiting differences among the acquired low-resolution images. Several experiments on synthetic and real data illustrate the robustness and utilization of the proposed technique in real applications.
引用
收藏
页码:2322 / 2332
页数:11
相关论文
共 50 条
  • [21] Multichannel blind deconvolution of seismic signals
    Kaaresen, KF
    Taxt, T
    GEOPHYSICS, 1998, 63 (06) : 2093 - 2107
  • [22] Blind multichannel image deconvolution with regularization
    Souidéne, W
    Abed-Meraim, K
    Beghdadi, A
    Proceedings of the Fourth IEEE International Symposium on Signal Processing and Information Technology, 2004, : 115 - 118
  • [23] Multichannel blind deconvolution of polarimetric imagery
    LeMaster, Daniel A.
    Cain, Stephen C.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2008, 25 (09) : 2170 - 2176
  • [24] Flexible multichannel blind deconvolution, an investigation
    Tsoi, AC
    Ma, LS
    2003 IEEE XIII WORKSHOP ON NEURAL NETWORKS FOR SIGNAL PROCESSING - NNSP'03, 2003, : 349 - 358
  • [25] Stability analysis of multichannel blind deconvolution
    Xia, B
    Zhang, LQ
    ADVANCES IN NEURAL NETWORKS - ISNN 2005, PT 2, PROCEEDINGS, 2005, 3497 : 514 - 519
  • [26] A variational Bayesian approach to number of sources estimation for multichannel blind deconvolution
    Ma, Liangsuo
    Tsoi, Ah Chung
    SIGNAL IMAGE AND VIDEO PROCESSING, 2008, 2 (02) : 107 - 127
  • [27] A variational Bayesian approach to number of sources estimation for multichannel blind deconvolution
    Liangsuo Ma
    Ah Chung Tsoi
    Signal, Image and Video Processing, 2008, 2 : 107 - 127
  • [28] An eigen approach to stable multichannel blind deconvolution under an FIR subspace model
    Lee, Kiryung
    Krahmer, Felix
    Romberg, Justin
    2017 INTERNATIONAL CONFERENCE ON SAMPLING THEORY AND APPLICATIONS (SAMPTA), 2017, : 386 - 390
  • [29] Joint Multichannel Deconvolution and Blind Source Separation
    Jiang, Ming
    Bobin, Jerome
    Starck, Jean-Luc
    SIAM JOURNAL ON IMAGING SCIENCES, 2017, 10 (04): : 1997 - 2021
  • [30] Multichannel blind deconvolution application to marine seismic
    Nsiri, B
    Boucher, JM
    Chonavel, T
    OCEANS 2003 MTS/IEEE: CELEBRATING THE PAST...TEAMING TOWARD THE FUTURE, 2003, : 2761 - 2766