Theory of deep convolutional neural networks: Downsampling

被引:134
|
作者
Zhou, Ding-Xuan [1 ,2 ]
机构
[1] City Univ Hong Kong, Sch Data Sci, Kowloon, Hong Kong, Peoples R China
[2] City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China
关键词
Deep learning; Convolutional neural networks; Approximation theory; Downsampling; Filter masks; MULTILAYER FEEDFORWARD NETWORKS; OPTIMAL APPROXIMATION; REGRESSION; ALGORITHM; BOUNDS;
D O I
10.1016/j.neunet.2020.01.018
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Establishing a solid theoretical foundation for structured deep neural networks is greatly desired due to the successful applications of deep learning in various practical domains. This paper aims at an approximation theory of deep convolutional neural networks whose structures are induced by convolutions. To overcome the difficulty in theoretical analysis of the networks with linearly increasing widths arising from convolutions, we introduce a downsampling operator to reduce the widths. We prove that the downsampled deep convolutional neural networks can be used to approximate ridge functions nicely, which hints some advantages of these structured networks in terms of approximation or modeling. We also prove that the output of any multi-layer fully-connected neural network can be realized by that of a downsampled deep convolutional neural network with free parameters of the same order, which shows that in general, the approximation ability of deep convolutional neural networks is at least as good as that of fully-connected networks. Finally, a theorem for approximating functions on Riemannian manifolds is presented, which demonstrates that deep convolutional neural networks can be used to learn manifold features of data. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页码:319 / 327
页数:9
相关论文
共 50 条
  • [31] Deep Parametric Continuous Convolutional Neural Networks
    Wang, Shenlong
    Suo, Simon
    Ma, Wei-Chiu
    Pokrovsky, Andrei
    Urtasun, Raquel
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 2589 - 2597
  • [32] Review of Lightweight Deep Convolutional Neural Networks
    Chen, Fanghui
    Li, Shouliang
    Han, Jiale
    Ren, Fengyuan
    Yang, Zhen
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2024, 31 (04) : 1915 - 1937
  • [33] Activation Pruning of Deep Convolutional Neural Networks
    Ardakani, Arash
    Condo, Carlo
    Gross, Warren J.
    2017 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2017), 2017, : 1325 - 1329
  • [34] Review of Lightweight Deep Convolutional Neural Networks
    Fanghui Chen
    Shouliang Li
    Jiale Han
    Fengyuan Ren
    Zhen Yang
    Archives of Computational Methods in Engineering, 2024, 31 : 1915 - 1937
  • [35] Elastography mapped by deep convolutional neural networks
    DongXu Liu
    Frithjof Kruggel
    LiZhi Sun
    Science China Technological Sciences, 2021, 64 : 1567 - 1574
  • [36] Energy Propagation in Deep Convolutional Neural Networks
    Wiatowski, Thomas
    Grohs, Philipp
    Boelcskei, Helmut
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (07) : 4819 - 4842
  • [37] Predicting enhancers with deep convolutional neural networks
    Xu Min
    Wanwen Zeng
    Shengquan Chen
    Ning Chen
    Ting Chen
    Rui Jiang
    BMC Bioinformatics, 18
  • [38] Deep Convolutional Neural Networks for DGA Detection
    Catania, Carlos
    Garcia, Sebastian
    Torres, Pablo
    COMPUTER SCIENCE - CACIC 2018, 2019, 995 : 327 - 340
  • [39] Plankton Classification with Deep Convolutional Neural Networks
    Ouyang Py
    Hu Hong
    Shi Zhongzhi
    2016 IEEE INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC), 2016, : 132 - 136
  • [40] Malware Classification with Deep Convolutional Neural Networks
    Kalash, Mahmoud
    Rochan, Mrigank
    Mohammed, Noman
    Bruce, Neil D. B.
    Wang, Yang
    Iqbal, Farkhund
    2018 9TH IFIP INTERNATIONAL CONFERENCE ON NEW TECHNOLOGIES, MOBILITY AND SECURITY (NTMS), 2018,