Theory of deep convolutional neural networks: Downsampling

被引:134
|
作者
Zhou, Ding-Xuan [1 ,2 ]
机构
[1] City Univ Hong Kong, Sch Data Sci, Kowloon, Hong Kong, Peoples R China
[2] City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China
关键词
Deep learning; Convolutional neural networks; Approximation theory; Downsampling; Filter masks; MULTILAYER FEEDFORWARD NETWORKS; OPTIMAL APPROXIMATION; REGRESSION; ALGORITHM; BOUNDS;
D O I
10.1016/j.neunet.2020.01.018
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Establishing a solid theoretical foundation for structured deep neural networks is greatly desired due to the successful applications of deep learning in various practical domains. This paper aims at an approximation theory of deep convolutional neural networks whose structures are induced by convolutions. To overcome the difficulty in theoretical analysis of the networks with linearly increasing widths arising from convolutions, we introduce a downsampling operator to reduce the widths. We prove that the downsampled deep convolutional neural networks can be used to approximate ridge functions nicely, which hints some advantages of these structured networks in terms of approximation or modeling. We also prove that the output of any multi-layer fully-connected neural network can be realized by that of a downsampled deep convolutional neural network with free parameters of the same order, which shows that in general, the approximation ability of deep convolutional neural networks is at least as good as that of fully-connected networks. Finally, a theorem for approximating functions on Riemannian manifolds is presented, which demonstrates that deep convolutional neural networks can be used to learn manifold features of data. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页码:319 / 327
页数:9
相关论文
共 50 条
  • [21] Structured Pruning of Deep Convolutional Neural Networks
    Anwar, Sajid
    Hwang, Kyuyeon
    Sung, Wonyong
    ACM JOURNAL ON EMERGING TECHNOLOGIES IN COMPUTING SYSTEMS, 2017, 13 (03)
  • [22] Deep convolutional neural networks in the face of caricature
    Matthew Q. Hill
    Connor J. Parde
    Carlos D. Castillo
    Y. Ivette Colón
    Rajeev Ranjan
    Jun-Cheng Chen
    Volker Blanz
    Alice J. O’Toole
    Nature Machine Intelligence, 2019, 1 : 522 - 529
  • [23] Deep Convolutional Neural Networks on Cartoon Functions
    Grohs, Philipp
    Wiatowski, Thomas
    Bolcskei, Helmut
    2016 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2016, : 1163 - 1167
  • [24] Elastography mapped by deep convolutional neural networks
    Liu, DongXu
    Kruggel, Frithjof
    Sun, LiZhi
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2021, 64 (07) : 1567 - 1574
  • [25] Very Deep Convolutional Neural Networks for LVCSR
    Bi, Mengxiao
    Qian, Yanmin
    Yu, Kai
    16TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2015), VOLS 1-5, 2015, : 3259 - 3263
  • [26] Elastography mapped by deep convolutional neural networks
    LIU DongXu
    KRUGGEL Frithjof
    SUN LiZhi
    Science China(Technological Sciences), 2021, 64 (07) : 1567 - 1574
  • [27] Universal Consistency of Deep Convolutional Neural Networks
    Lin, Shao-Bo
    Wang, Kaidong
    Wang, Yao
    Zhou, Ding-Xuan
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (07) : 4610 - 4617
  • [28] Deep convolutional neural networks in the face of caricature
    Hill, Matthew Q.
    Parde, Connor J.
    Castillo, Carlos D.
    Colon, Y. Ivette
    Ranjan, Rajeev
    Chen, Jun-Cheng
    Blanz, Volker
    O'Toole, Alice J.
    NATURE MACHINE INTELLIGENCE, 2019, 1 (11) : 522 - 529
  • [29] WEATHER CLASSIFICATION WITH DEEP CONVOLUTIONAL NEURAL NETWORKS
    Elhoseiny, Mohamed
    Huang, Sheng
    Elgammal, Ahmed
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 3349 - 3353
  • [30] Refining Architectures of Deep Convolutional Neural Networks
    Shankar, Sukrit
    Robertson, Duncan
    Ioannou, Yani
    Criminisi, Antonio
    Cipolla, Roberto
    2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 2212 - 2220