Ordinal Regression Models in Psychology: A Tutorial

被引:312
|
作者
Buerkner, Paul-Christian [1 ]
Vuorre, Matti [2 ]
机构
[1] Univ Munster, Dept Psychol, Fliednerstr 21, D-48149 Munster, Germany
[2] Columbia Univ, Dept Psychol, New York, NY 10027 USA
关键词
ordinal models; Likert items; brms; R; open data; open materials; CROSS-VALIDATION; ITEM RESPONSE; RASCH MODEL; R PACKAGE; EQUIVALENCE; CONFIDENCE; STATISTICS;
D O I
10.1177/2515245918823199
中图分类号
B84 [心理学];
学科分类号
04 ; 0402 ;
摘要
Ordinal variables, although extremely common in psychology, are almost exclusively analyzed with statistical models that falsely assume them to be metric. This practice can lead to distorted effect-size estimates, inflated error rates, and other problems. We argue for the application of ordinal models that make appropriate assumptions about the variables under study. In this Tutorial, we first explain the three major classes of ordinal models: the cumulative, sequential, and adjacent-category models. We then show how to fit ordinal models in a fully Bayesian framework with the R package brms, using data sets on opinions about stem-cell research and time courses of marriage. The appendices provide detailed mathematical derivations of the models and a discussion of censored ordinal models. Compared with metric models, ordinal models provide better theoretical interpretation and numerical inference from ordinal data, and we recommend their widespread adoption in psychology.
引用
下载
收藏
页码:77 / 101
页数:25
相关论文
共 50 条
  • [31] Multivariate ordinal regression models: an analysis of corporate credit ratings
    Hirk, Rainer
    Hornik, Kurt
    Vana, Laura
    STATISTICAL METHODS AND APPLICATIONS, 2019, 28 (03): : 507 - 539
  • [32] mvord: An R Package for Fitting Multivariate Ordinal Regression Models
    Hirk, Rainer
    Hornik, Kurt
    Vana, Laura
    JOURNAL OF STATISTICAL SOFTWARE, 2020, 93 (04): : 1 - 41
  • [33] GOODNESS-OF-LINK TESTING IN ORDINAL REGRESSION-MODELS
    GENTER, FC
    BIOMETRICS, 1983, 39 (04) : 1118 - 1118
  • [34] How to test for goodness of fit in ordinal logistic regression models
    Fagerland, Morten W.
    Hosmer, David W.
    STATA JOURNAL, 2017, 17 (03): : 668 - 686
  • [35] Evaluating the Performance of Explanation Methods on Ordinal Regression CNN Models
    Barbero-Gomez, Javier
    Cruz, Ricardo
    Cardoso, Jaime S.
    Gutierrez, Pedro A.
    Hervas-Martinez, Cesar
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2023, PT II, 2023, 14135 : 529 - 540
  • [36] PARTIAL RESIDUALS IN CUMULATIVE REGRESSION-MODELS FOR ORDINAL DATA
    PRUSCHA, H
    STATISTICAL PAPERS, 1994, 35 (03) : 273 - 284
  • [37] Multivariate ordinal regression models: an analysis of corporate credit ratings
    Rainer Hirk
    Kurt Hornik
    Laura Vana
    Statistical Methods & Applications, 2019, 28 : 507 - 539
  • [38] Goodness-of-fit tests for ordinal response regression models
    Lipsitz, SR
    Fitzmaurice, GM
    Molenberghs, G
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 1996, 45 (02) : 175 - 190
  • [39] Assessing ordinal logistic regression models via nonparametric smoothing
    Lin, Kuo-Chin
    Chen, Yi-Ju
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2008, 37 (06) : 917 - 930
  • [40] adjcatlogit, ccrlogit, and ucrlogit: Fitting ordinal logistic regression models
    Fagerland, Morten W.
    STATA JOURNAL, 2014, 14 (04): : 947 - 964