Robust recursive principal component analysis modeling for adaptive monitoring

被引:64
|
作者
Jin, HD
Lee, YH
Lee, G
Han, CH
机构
[1] Seoul Natl Univ, Sch Chem & Biol Engn, Inst Chem Proc, Seoul 151742, South Korea
[2] Chungju Natl Univ, Dept Chem Engn, Chungju 380702, Chungbuk, South Korea
[3] Seoul Natl Univ, Automat Syst & Res Inst, Seoul 151742, South Korea
[4] Korea Inst Energy Res, Wastes Pyrolysis Res Ctr, Taejon 305343, South Korea
关键词
D O I
10.1021/ie050850t
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
This paper proposes a robust recursive principal component analysis (PCA) modeling procedure that aims to improve the monitoring performance by detecting and identifying process changes, removing disturbances, and updating the model to reflect the operating mode change. The proposed approach was applied to an industrial fired heater. Compared with previous approaches based on conventional PCA or recursive PCA, this new procedure demonstrated improved monitoring performance. The case study shows that both the number of false alarms and the number of model updates were significantly reduced in comparison with previous methods.
引用
收藏
页码:696 / 703
页数:8
相关论文
共 50 条
  • [41] Bayesian Robust Principal Component Analysis
    Ding, Xinghao
    He, Lihan
    Carin, Lawrence
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (12) : 3419 - 3430
  • [42] Robust Discriminative Principal Component Analysis
    Xu, Xiangxi
    Lai, Zhihui
    Chen, Yudong
    Kong, Heng
    [J]. BIOMETRIC RECOGNITION, CCBR 2018, 2018, 10996 : 231 - 238
  • [43] Double robust principal component analysis
    Wang, Qianqian
    Gao, QuanXue
    Sun, Gan
    Ding, Chris
    [J]. NEUROCOMPUTING, 2020, 391 : 119 - 128
  • [44] Robust and Sparse Principal Component Analysis With Adaptive Loss Minimization for Feature Selection
    Bian, Jintang
    Zhao, Dandan
    Nie, Feiping
    Wang, Rong
    Li, Xuelong
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (03) : 3601 - 3614
  • [45] Flexible robust principal component analysis
    He, Zinan
    Wu, Jigang
    Han, Na
    [J]. INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2020, 11 (03) : 603 - 613
  • [46] Robust algorithms for principal component analysis
    Yang, TN
    Wang, SD
    [J]. PATTERN RECOGNITION LETTERS, 1999, 20 (09) : 927 - 933
  • [47] Double robust principal component analysis
    Wang, Qianqian
    Gao, QuanXue
    Sun, Gan
    Ding, Chris
    [J]. Neurocomputing, 2022, 391 : 119 - 128
  • [48] Robust sparse principal component analysis
    Qian Zhao
    DeYu Meng
    ZongBen Xu
    [J]. Science China Information Sciences, 2014, 57 : 1 - 14
  • [49] Incomplete robust principal component analysis
    Shi, Jiarong
    Zheng, Xiuyun
    Yong, Longquan
    [J]. ICIC Express Letters, Part B: Applications, 2014, 5 (06): : 1531 - 1538
  • [50] Flexible robust principal component analysis
    Zinan He
    Jigang Wu
    Na Han
    [J]. International Journal of Machine Learning and Cybernetics, 2020, 11 : 603 - 613