Flexible robust principal component analysis

被引:4
|
作者
He, Zinan [1 ]
Wu, Jigang [1 ]
Han, Na [1 ]
机构
[1] Guangdong Univ Technol, Sch Comp Sci, Technol, Guangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Error correction; Robust principal component analysis (RPCA); Subspace learning; DISPERSION MATRICES; SYSTEMS;
D O I
10.1007/s13042-019-00999-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The error correction problem is a very important topic in machine learning. However, existing methods only focus on data recovery and ignore data compact representation. In this paper, we propose a flexible robust principal component analysis (FRPCA) method in which two different matrices are used to perform error correction and the data compact representation can be obtained by using one of matrices. Moreover, FRPCA selects the most relevant features to guarantee that the recovered data can faithfully preserve the original data semantics. The learning is done by solving a nuclear-norm regularized minimization problem, which is convex and can be solved in polynomial time. Experiments were conducted on image sequences containing targets of interest in a variety of environments, e.g., offices, campuses. We also compare our method with existing method in recovering the face images from corruptions. Experimental results show that the proposed method achieves better performances and it is more practical than the existing approaches.
引用
收藏
页码:603 / 613
页数:11
相关论文
共 50 条
  • [1] Flexible robust principal component analysis
    Zinan He
    Jigang Wu
    Na Han
    [J]. International Journal of Machine Learning and Cybernetics, 2020, 11 : 603 - 613
  • [2] A ROBUST PRINCIPAL COMPONENT ANALYSIS
    RUYMGAART, FH
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 1981, 11 (04) : 485 - 497
  • [3] Robust Principal Component Analysis?
    Candes, Emmanuel J.
    Li, Xiaodong
    Ma, Yi
    Wright, John
    [J]. JOURNAL OF THE ACM, 2011, 58 (03)
  • [4] A robust principal component analysis
    Ibazizen, M
    Dauxois, J
    [J]. STATISTICS, 2003, 37 (01) : 73 - 83
  • [5] Robust principal component analysis
    Partridge, M
    Jabri, M
    [J]. NEURAL NETWORKS FOR SIGNAL PROCESSING X, VOLS 1 AND 2, PROCEEDINGS, 2000, : 289 - 298
  • [6] Robust sparse principal component analysis
    ZHAO Qian
    MENG DeYu
    XU ZongBen
    [J]. Science China(Information Sciences), 2014, 57 (09) : 175 - 188
  • [7] Robust Multilinear Principal Component Analysis
    Inoue, Kohei
    Hara, Kenji
    Urahama, Kiichi
    [J]. 2009 IEEE 12TH INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2009, : 591 - 597
  • [8] Robust Stochastic Principal Component Analysis
    Goes, John
    Zhang, Teng
    Arora, Raman
    Lerman, Gilad
    [J]. ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 33, 2014, 33 : 266 - 274
  • [9] Robust Kernel Principal Component Analysis
    Huang, Su-Yun
    Yeh, Yi-Ren
    Eguchi, Shinto
    [J]. NEURAL COMPUTATION, 2009, 21 (11) : 3179 - 3213
  • [10] Inductive Robust Principal Component Analysis
    Bao, Bing-Kun
    Liu, Guangcan
    Xu, Changsheng
    Yan, Shuicheng
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 21 (08) : 3794 - 3800