Automated Variable Selection and Shrinkage for Day-Ahead Electricity Price Forecasting

被引:86
|
作者
Uniejewski, Bartosz [1 ]
Nowotarski, Jakub [1 ]
Weron, Rafal [1 ]
机构
[1] Wroclaw Univ Technol, Dept Operat Res, PL-50370 Wroclaw, Poland
关键词
electricity price forecasting; day-ahead market; autoregression; variable selection; stepwise regression; ridge regression; lasso; elastic net; TIME-SERIES; REGRESSION; MODELS; LASSO;
D O I
10.3390/en9080621
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In day-ahead electricity price forecasting (EPF) variable selection is a crucial issue. Conducting an empirical study involving state-of-the-art parsimonious expert models as benchmarks, datasets from three major power markets and five classes of automated selection and shrinkage procedures (single-step elimination, stepwise regression, ridge regression, lasso and elastic nets), we show that using the latter two classes can bring significant accuracy gains compared to commonly-used EPF models. In particular, one of the elastic nets, a class that has not been considered in EPF before, stands out as the best performing model overall.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Day-Ahead Electricity Price Forecasting Based on Hybrid Regression Model
    Alkawaz, Ali Najem
    Abdellatif, Abdallah
    Kanesan, Jeevan
    Khairuddin, Anis Salwa Mohd
    Gheni, Hassan Muwafaq
    IEEE ACCESS, 2022, 10 : 108021 - 108033
  • [32] Forecasting methods of market clearing price in day-ahead electricity market
    Yang, Bo
    Zhao, Zun-Lian
    Chen, Yun-Ping
    Han, Qi-Ye
    Gaodianya Jishu/High Voltage Engineering, 2007, 33 (07): : 144 - 150
  • [33] Application of bagging in day-ahead electricity price forecasting and factor augmentation
    Ozen, Kadir
    Yildirim, Dilem
    ENERGY ECONOMICS, 2021, 103
  • [34] Forecasting Day-ahead Electricity Price Using a Hybrid Improved Approach
    Hu, Jian-Ming
    Wang, Jian-Zhou
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2017, 12 (06) : 2166 - 2176
  • [35] Day-Ahead Electricity Market Clearing Price Forecasting: A Case in Yunnan
    Yu, Xuguang
    Li, YaPeng
    Yang, Qiang
    Li, Gang
    Cao, Rui
    Cheng, Chuntian
    Chen, Fu
    WORLD ENVIRONMENTAL AND WATER RESOURCES CONGRESS 2018: WATERSHED MANAGEMENT, IRRIGATION AND DRAINAGE, AND WATER RESOURCES PLANNING AND MANAGEMENT, 2018, : 141 - 151
  • [36] Impact of Natural Gas Price on Electricity Price Forecasting in Turkish Day-Ahead Market
    Poyrazoglu, Oguzhan Goktug
    Poyrazoglu, Gokturk
    2019 IEEE 1ST GLOBAL POWER, ENERGY AND COMMUNICATION CONFERENCE (GPECOM2019), 2019, : 435 - 439
  • [37] Day-Ahead Electricity Price Probabilistic Forecasting Based on SHAP Feature Selection and LSTNet Quantile Regression
    Liu, Huixin
    Shen, Xiaodong
    Tang, Xisheng
    Liu, Junyong
    ENERGIES, 2023, 16 (13)
  • [38] A hybrid day-ahead electricity price forecasting framework based on time series
    Xiong, Xiaoping
    Qing, Guohua
    ENERGY, 2023, 264
  • [39] Electricity price forecasting on the day-ahead market using artificial intelligence algorithms
    Galinska, Jolanta
    Terlikowski, Pawel
    PRZEGLAD ELEKTROTECHNICZNY, 2024, 100 (09): : 156 - 162
  • [40] The Role of Weather Predictions in Electricity Price Forecasting Beyond the Day-Ahead Horizon
    Sgarlato, Raffaele
    Ziel, Florian
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2023, 38 (03) : 2500 - 2511