Optimizing Video Prediction via Video Frame Interpolation

被引:10
|
作者
Wu, Yue [1 ]
Wen, Qiang [1 ]
Chen, Qifeng [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Hong Kong, Peoples R China
关键词
D O I
10.1109/CVPR52688.2022.01729
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Video prediction is an extrapolation task that predicts future frames given past frames, and video frame interpolation is an interpolation task that estimates intermediate frames between two frames. We have witnessed the tremendous advancement of video frame interpolation, but the general video prediction in the wild is still an open question. Inspired by the photo-realistic results of video frame interpolation, we present a new optimization framework for video prediction via video frame interpolation, in which we solve an extrapolation problem based on an interpolation model. Our video prediction framework is based on optimization with a pretrained differentiable video frame interpolation module without the need for a training dataset, and thus there is no domain gap issue between training and test data. Also, our approach does not need any additional information such as semantic or instance maps, which makes our framework applicable to any video. Extensive experiments on the Cityscapes, KITTI, DAVIS, Middlebury, and Vimeo9OK datasets show that our video prediction results are robust in general scenarios, and our approach outperforms other video prediction methods that require a large amount of training data or extra semantic information.
引用
收藏
页码:17793 / 17802
页数:10
相关论文
共 50 条
  • [41] Video Frame Interpolation With Learnable Uncertainty and Decomposition
    Yu, Zhiyang
    Chen, Xijun
    Ren, Shunqing
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 2642 - 2646
  • [42] Progressive Motion Boosting for Video Frame Interpolation
    Xiao, Jing
    Xu, Kangmin
    Hu, Mengshun
    Liao, Liang
    Wang, Zheng
    Lin, Chia-Wen
    Wang, Mi
    Satoh, Shin'ichi
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 8076 - 8090
  • [43] Luminance Compensation MEMC for Video Frame Interpolation
    Xu, Zixuan
    Ying, Wenjing
    He, Hao
    Zhu, Qingmeng
    Liang, Jian
    Wang, Haihui
    [J]. IEEE ACCESS, 2022, 10 : 120752 - 120764
  • [44] A Perceptual Quality Metric for Video Frame Interpolation
    Hou, Qiqi
    Ghildyal, Abhijay
    Liu, Feng
    [J]. COMPUTER VISION - ECCV 2022, PT XV, 2022, 13675 : 234 - 253
  • [45] Variational approach for capsule video frame interpolation
    Ahmed Mohammed
    Ivar Farup
    Sule Yildirim
    Marius Pedersen
    Øistein Hovde
    [J]. EURASIP Journal on Image and Video Processing, 2018
  • [46] LAP-BASED VIDEO FRAME INTERPOLATION
    Jayashankar, Tejas
    Moulin, Pierre
    Blu, Thierry
    Gilliam, Chris
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 4195 - 4199
  • [47] MOTION FEEDBACK DESIGN FOR VIDEO FRAME INTERPOLATION
    Hu, Mengshun
    Liao, Liang
    Xiao, Jing
    Gu, Lin
    Satoh, Shin'ichi
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 4347 - 4351
  • [48] A Motion Distillation Framework for Video Frame Interpolation
    Zhou, Shili
    Tan, Weimin
    Yan, Bo
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 3728 - 3740
  • [49] Texture-aware Video Frame Interpolation
    Danier, Duolikun
    Bull, David
    [J]. 2021 PICTURE CODING SYMPOSIUM (PCS), 2021, : 226 - 230
  • [50] Video Frame Interpolation without Temporal Priors
    Zhang, Youjian
    Wang, Chaoyue
    Tao, Dacheng
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33