A Motion Distillation Framework for Video Frame Interpolation

被引:0
|
作者
Zhou, Shili [1 ]
Tan, Weimin [1 ]
Yan, Bo [1 ]
机构
[1] Fudan Univ, Shanghai Collaborat Innovat Ctr Intelligent Visual, Sch Comp Sci, Shanghai Key Lab Intelligent Informat Proc, Shanghai 201203, Peoples R China
关键词
Training; Computational modeling; Optical flow; Kernel; Interpolation; Motion estimation; Correlation; Deep learning; frame interpolation; knowledge distillation; optical flow; IMAGE QUALITY; OPTICAL-FLOW; ENHANCEMENT;
D O I
10.1109/TMM.2023.3314971
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In recent years, we have seen the success of deep video enhancement models. However, the performance improvement of new methods has gradually entered a bottleneck period. Optimizing model structures or increasing training data brings less and less improvement. We argue that existing models with advanced structures have not fully demonstrated their performance and demand further exploration. In this study, we statistically analyze the relationship between motion estimation accuracy and video interpolation quality of existing video frame interpolation methods, and find that only supervising the final output leads to inaccurate motion and further affects the interpolation performance. Based on this important observation, we propose a general motion distillation framework that can be widely applied to flow-based and kernel-based video frame interpolation methods. Specifically, we begin by training a teacher model, which uses the ground-truth target frame and adjacent frames to estimate motion. These motion estimates then guide the training of a student model for video frame interpolation. Our experimental results demonstrate the effectiveness of this approach in enhancing performance across diverse advanced video interpolation model structures. For example, after applying our motion distillation framework, the CtxSyn model achieves a PSNR gain of 3.047 dB.
引用
收藏
页码:3728 / 3740
页数:13
相关论文
共 50 条
  • [1] Dual Motion Attention and Enhanced Knowledge Distillation for Video Frame Interpolation
    Zhang, Dengyong
    Lou, Runqi
    Chen, Jiaxin
    Liao, Xin
    Yang, Gaobo
    Ding, Xiangling
    2024 ASIA PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE, APSIPA ASC, 2024,
  • [2] Progressive Motion Boosting for Video Frame Interpolation
    Xiao, Jing
    Xu, Kangmin
    Hu, Mengshun
    Liao, Liang
    Wang, Zheng
    Lin, Chia-Wen
    Wang, Mi
    Satoh, Shin'ichi
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 8076 - 8090
  • [3] Motion-Aware Video Frame Interpolation
    Han, Pengfei
    Zhang, Fuhua
    Zhao, Bin
    Li, Xuelong
    NEURAL NETWORKS, 2024, 178
  • [4] MOTION FEEDBACK DESIGN FOR VIDEO FRAME INTERPOLATION
    Hu, Mengshun
    Liao, Liang
    Xiao, Jing
    Gu, Lin
    Satoh, Shin'ichi
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 4347 - 4351
  • [5] Asymmetric Bilateral Motion Estimation for Video Frame Interpolation
    Park, Junheum
    Lee, Chul
    Kim, Chang-Su
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 14519 - 14528
  • [6] Video Frame Interpolation for Large Motion with Generative Prior
    Huang, Yuheng
    Jia, Xu
    Su, Xin
    Zhang, Lu
    Li, Xiaomin
    Wang, Qinghe
    Lu, Huchuan
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT X, 2025, 15040 : 402 - 415
  • [7] Robust Video Frame Interpolation With Exceptional Motion Map
    Park, Minho
    Kim, Hak Gu
    Lee, Sangmin
    Ro, Yong Man
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (02) : 754 - 764
  • [8] Sparse Global Matching for Video Frame Interpolation with Large Motion
    Liu, Chunxu
    Zhang, Guozhen
    Zhao, Rui
    Wang, Limin
    2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2024, : 19125 - 19134
  • [9] A Motion Refinement Network With Local Compensation for Video Frame Interpolation
    Wang, Kaiqiao
    Liu, Peng
    IEEE ACCESS, 2023, 11 : 103092 - 103101
  • [10] Fast Asymmetric Bilateral Motion Estimation for Video Frame Interpolation
    Kim, Jintae
    Park, Junheum
    Kim, Chang-Su
    PROCEEDINGS OF 2022 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2022, : 1030 - 1034