D-optimal design for the heteroscedastic Berman model on an arc

被引:1
|
作者
Liu, Xin [1 ]
Yue, Rong-Xian [2 ]
Wong, Weng Kee [3 ]
机构
[1] Donghua Univ, Coll Sci, Shanghai 201600, Peoples R China
[2] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
[3] Univ Calif Los Angeles, Dept Biostat, Los Angeles, CA 90095 USA
基金
美国国家卫生研究院; 中国国家自然科学基金;
关键词
Approximate design; Complete classes; D-efficiency; Equidistant sampling method; FITTING CIRCLES; CIRCULAR-ARC; REGRESSION; ELLIPSES;
D O I
10.1016/j.jmva.2018.07.003
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
There are various methods for fitting data to circles or ellipses in many different types of applied problems. However, the design of such studies is rarely discussed and for the few that do, model errors are commonly assumed to be homoscedastic and uncorrelated. This paper provides an analytic description of the D-optimal designs for estimating parameters in the bivariate Berman model on an arc when errors are correlated and heteroscedastic. We evaluate D-efficiencies and relative efficiencies of the commonly used equidistant sampling methods and show that such designs can be inefficient. (C) 2018 Published by Elsevier Inc.
引用
收藏
页码:131 / 141
页数:11
相关论文
共 50 条