GENERALLY RATIONAL POLYNOMIALS IN TWO VARIABLES

被引:0
|
作者
Daigle, Daniel [1 ]
机构
[1] Univ Ottawa, Dept Math & Stat, Ottawa, ON K1N 6N5, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
PLANE; LINE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let k be an algebraically closed field. A polynomial F is an element of k[X, Y] is said to be generally rational if, for almost all lambda is an element of k, the curve "F = lambda" is rational. It is well known that, if char k = 0, F is generally rational if there exists G is an element of k(X, Y) such that k(F, G) = k(X, Y). We give analogous results valid in arbitrary characteristic.
引用
收藏
页码:139 / 159
页数:21
相关论文
共 50 条
  • [41] Local theory of stable polynomials and bounded rational functions of several variables
    Bickel, Kelly
    Knese, Greg
    Pascoe, James eldred
    Sola, Alan
    ANNALES POLONICI MATHEMATICI, 2024, 133 (02)
  • [42] On the Malgrange condition for complex polynomials of two variables
    Rabier, PJ
    MANUSCRIPTA MATHEMATICA, 2002, 109 (04) : 493 - 509
  • [43] Orthogonal polynomials of two discrete variables on the simplex
    Rodal, J
    Area, I
    Godoy, E
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2005, 16 (03) : 263 - 280
  • [44] Multivariate generalized Bernstein polynomials: identities for orthogonal polynomials of two variables
    Stanisław Lewanowicz
    Paweł Woźny
    Iván Area
    Eduardo Godoy
    Numerical Algorithms, 2008, 49 : 199 - 220
  • [45] ON PSEUDO HERMITE MATRIX POLYNOMIALS OF TWO VARIABLES
    Metwally, M. S.
    Mohamed, M. T.
    Shehata, A.
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2010, 4 (02): : 169 - 178
  • [46] GENERALIZATION OF LAGUERRE MATRIX POLYNOMIALS FOR TWO VARIABLES
    Ali, Asad
    Iqbal, Muhammad Zafar
    HONAM MATHEMATICAL JOURNAL, 2021, 43 (01): : 141 - 151
  • [47] Systems of Three Polynomials With Two Separated Variables
    Elkadi, Mohamed
    Galligo, Andre
    ISSAC 2007: PROCEEDINGS OF THE 2007 INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION, 2007, : 159 - 166
  • [48] The Brahmagupta polynomials in two complex variables and their conjugates
    Rangarajan, R
    Sudheer, HS
    FIBONACCI QUARTERLY, 2002, 40 (02): : 161 - 169
  • [49] On the Malgrange condition for complex polynomials of two variables
    Patrick J. Rabier
    manuscripta mathematica, 2002, 109 : 493 - 509
  • [50] Weak classical orthogonal polynomials in two variables
    Fernández, L
    Pérez, TE
    Piñar, MA
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 178 (1-2) : 191 - 203