GENERALLY RATIONAL POLYNOMIALS IN TWO VARIABLES

被引:0
|
作者
Daigle, Daniel [1 ]
机构
[1] Univ Ottawa, Dept Math & Stat, Ottawa, ON K1N 6N5, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
PLANE; LINE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let k be an algebraically closed field. A polynomial F is an element of k[X, Y] is said to be generally rational if, for almost all lambda is an element of k, the curve "F = lambda" is rational. It is well known that, if char k = 0, F is generally rational if there exists G is an element of k(X, Y) such that k(F, G) = k(X, Y). We give analogous results valid in arbitrary characteristic.
引用
收藏
页码:139 / 159
页数:21
相关论文
共 50 条
  • [21] Irreducible Polynomials in Two Variables Proposal
    Safaei, Navid
    AMERICAN MATHEMATICAL MONTHLY, 2023, 130 (04): : 390 - 390
  • [22] Orthogonal polynomials in two complex variables
    Jackson, D
    ANNALS OF MATHEMATICS, 1938, 39 : 262 - 268
  • [23] Bernoulli and Euler Polynomials in Two Variables
    Pita-Ruiz, Claudio
    KYUNGPOOK MATHEMATICAL JOURNAL, 2024, 64 (01): : 133 - 159
  • [24] The Brahmagupta polynomials in two complex variables
    Suryanarayan, ER
    FIBONACCI QUARTERLY, 1998, 36 (01): : 34 - 42
  • [25] Quadratic modules of polynomials in two variables
    Cabral, Maria Eugnia Canto
    Prestel, Alexander
    ADVANCES IN GEOMETRY, 2008, 8 (02) : 189 - 204
  • [26] ON THE LIMITS OF QUOTIENTS OF POLYNOMIALS IN TWO VARIABLES
    Witula, Roman
    Hetmaniok, Edyta
    Wrobel, Alicja
    Matlak, Jaroslaw
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTATIONAL MECHANICS, 2015, 14 (01) : 121 - 132
  • [27] Rational points and prime values of polynomials in moderately many variables
    Destagnol, Kevin
    Sofos, Efthymios
    BULLETIN DES SCIENCES MATHEMATIQUES, 2019, 156
  • [28] ON THE USAGE OF SPECIAL FUNCTIONS OF TWO VARIABLES FOR STUDYING OF ORTHOGONAL POLYNOMIALS OF TWO VARIABLES
    Tasmambetov, Zh. N.
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2015, 19 (04): : 710 - 721
  • [29] Associative rational functions in two variables
    Brawley, JV
    Gao, S
    Mills, D
    FINITE FIELDS AND APPLICATIONS, 2001, : 43 - 56
  • [30] Jacobian Pairs of Two Rational Polynomials are Automorphisms
    Van Chau, Nguyen
    VIETNAM JOURNAL OF MATHEMATICS, 2014, 42 (03) : 401 - 406