GENERALLY RATIONAL POLYNOMIALS IN TWO VARIABLES

被引:0
|
作者
Daigle, Daniel [1 ]
机构
[1] Univ Ottawa, Dept Math & Stat, Ottawa, ON K1N 6N5, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
PLANE; LINE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let k be an algebraically closed field. A polynomial F is an element of k[X, Y] is said to be generally rational if, for almost all lambda is an element of k, the curve "F = lambda" is rational. It is well known that, if char k = 0, F is generally rational if there exists G is an element of k(X, Y) such that k(F, G) = k(X, Y). We give analogous results valid in arbitrary characteristic.
引用
收藏
页码:139 / 159
页数:21
相关论文
共 50 条
  • [1] POLYNOMIALS RELATED TO EXPANSIONS OF CERTAIN RATIONAL FUNCTIONS IN TWO VARIABLES
    Dilcher, Karl
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1988, 19 (02) : 473 - 483
  • [2] Nontrivial rational polynomials in two variables have reducible fibres
    Neumann, WD
    Norbury, P
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1998, 58 (03) : 501 - 503
  • [3] ON INEQUALITIES FOR POLYNOMIALS IN TWO VARIABLES
    Gabrielyan, O. R.
    Ghazaryan, H. G.
    Margaryan, V. N.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2009, 12 (02): : 311 - 333
  • [4] CYCLIC POLYNOMIALS IN TWO VARIABLES
    Beneteau, Catherine
    Knese, Greg
    Kosinski, Lukasz
    Liaw, Constanze
    Seco, Daniel
    Sola, Alan
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (12) : 8737 - 8754
  • [6] On Polynomials Associated with Humbert's Polynomials of Two Variables
    Khammash, Ghazi S.
    INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES AND STATISTICS 2013 (ICMSS2013), 2013, 1557 : 385 - 390
  • [7] One remark on polynomials in two variables
    Bartolo, EA
    CassouNogues, P
    PACIFIC JOURNAL OF MATHEMATICS, 1996, 176 (02) : 297 - 309
  • [8] Holomorphic Hermite polynomials in two variables
    Gorska, K.
    Horzela, A.
    Szafraniec, F. H.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 470 (02) : 750 - 769
  • [9] On Hermite matrix polynomials of two variables
    Department of Mathematics, Al-Aqsa University, Gaza Strip, Palestine
    J. Appl. Sci., 2008, 7 (1221-1227):
  • [10] On the irreducibility of some polynomials in two variables
    Brindza, B
    Pinter, A
    ACTA ARITHMETICA, 1997, 82 (03) : 303 - 307