Exploring a Multi-source Fusion Approach for Genomics Information Retrieval

被引:0
|
作者
Hu, Qinmin Vivian [1 ]
Huang, Xiangji Jimmy [1 ]
Miao, Jun [1 ]
机构
[1] York Univ, Informat Retrieval & Knowledge Management Res Lab, Toronto, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Multi-source Fusion; Reciprocal; CombMNZ; Genomics; Information Retrieval;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we focus on the biomedicine domain to propose a multi-source fusion approach for improving information retrieval performance. First, we consider a common scenario for a metasearch system that has access to multiple baselines with retrieving and ranking documents/passages by their own models. Second, given selected baselines from multiple sources, we employ two modified fusion rules in the proposed approach, reciprocal and combMNZ, to rerank the candidates as the output for evaluation. Third, our empirical study on both 2007 and 2006 genomics data sets demonstrates the viability of the proposed approach to better performance fusion. Fourth, the experimental results show that the reciprocal method provides notable improvements on the individual baseline, especially on the effective passage MAP, the passage2-level and the diversity MAP, the aspect-level.
引用
收藏
页码:669 / 672
页数:4
相关论文
共 50 条
  • [21] An efficient hierarchical model for multi-source information fusion
    Saadi, Ismail
    Farooq, Bilal
    Mustafa, Ahmed
    Teller, Jacques
    Cools, Mario
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2018, 110 : 352 - 362
  • [22] Multi-source Information Fusion Based on Data Driven
    Zhang Xin
    Yang Li
    Zhang Yan
    [J]. ADVANCES IN SCIENCE AND ENGINEERING, PTS 1 AND 2, 2011, 40-41 : 121 - 126
  • [23] Set Measure Directed Multi-Source Information Fusion
    Yager, Ronald R.
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2011, 19 (06) : 1031 - 1039
  • [24] Analysis and Comparison of Multi-Source Information Fusion Technologies
    Li, Yang
    Zhao, Ming
    Xu, Mengyao
    Liu, Yunfei
    Qian, Yuchen
    [J]. FUZZY SYSTEMS AND DATA MINING V (FSDM 2019), 2019, 320 : 1057 - 1063
  • [25] Multi-source Information Fusion for Personalized Restaurant Recommendation
    Sun, Jing
    Xiong, Yun
    Zhu, Yangyong
    Liu, Junming
    Guan, Chu
    Xiong, Hui
    [J]. SIGIR 2015: PROCEEDINGS OF THE 38TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2015, : 983 - 986
  • [26] Multi-source electricity information fusion methods: A survey
    Liu, Kunling
    Zeng, Yu
    Xu, Jia
    Jiang, He
    Huang, Yan
    Peng, Chengwei
    [J]. FRONTIERS IN ENERGY RESEARCH, 2023, 10
  • [27] A multi-source information fusion model for outlier detection
    Zhang, Pengfei
    Li, Tianrui
    Wang, Guoqiang
    Wang, Dexian
    Lai, Pei
    Zhang, Fan
    [J]. INFORMATION FUSION, 2023, 93 : 192 - 208
  • [28] Ensemble Learning Based Multi-Source Information Fusion
    Xu, Junyi
    Li, Le
    Ji, Ming
    [J]. 2019 INTERNATIONAL CONFERENCE ON IMAGE AND VIDEO PROCESSING, AND ARTIFICIAL INTELLIGENCE, 2019, 11321
  • [29] Fault diagnosis using multi-source information fusion
    Fan, Xianfeng
    Zuo, Ming J.
    [J]. 2006 9TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION, VOLS 1-4, 2006, : 275 - 280
  • [30] Multi-source Information Fusion for Sense and Avoidance of UAV
    Li Yao-Jun
    Pan Quan
    Yang Feng
    Li Jun-Wei
    Zhu Ying
    [J]. PROCEEDINGS OF THE 29TH CHINESE CONTROL CONFERENCE, 2010, : 2861 - 2866