Exploring a Multi-source Fusion Approach for Genomics Information Retrieval

被引:0
|
作者
Hu, Qinmin Vivian [1 ]
Huang, Xiangji Jimmy [1 ]
Miao, Jun [1 ]
机构
[1] York Univ, Informat Retrieval & Knowledge Management Res Lab, Toronto, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Multi-source Fusion; Reciprocal; CombMNZ; Genomics; Information Retrieval;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we focus on the biomedicine domain to propose a multi-source fusion approach for improving information retrieval performance. First, we consider a common scenario for a metasearch system that has access to multiple baselines with retrieving and ranking documents/passages by their own models. Second, given selected baselines from multiple sources, we employ two modified fusion rules in the proposed approach, reciprocal and combMNZ, to rerank the candidates as the output for evaluation. Third, our empirical study on both 2007 and 2006 genomics data sets demonstrates the viability of the proposed approach to better performance fusion. Fourth, the experimental results show that the reciprocal method provides notable improvements on the individual baseline, especially on the effective passage MAP, the passage2-level and the diversity MAP, the aspect-level.
引用
收藏
页码:669 / 672
页数:4
相关论文
共 50 条
  • [11] Multi-source information fusion and its application
    You, Linru
    Zhang, Jinge
    Wang, Yan
    [J]. Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 2000, 32 (04): : 101 - 103
  • [12] A data-driven modeling approach to multi-source information fusion system
    Quan, Hongwei
    Zhang, Long
    Chen, Lin
    [J]. MECHANICAL ENGINEERING, MATERIALS AND ENERGY III, 2014, 483 : 621 - +
  • [13] Variational approach for multi-source image fusion
    Tang, Sizhang
    Fang, Faming
    Zhang, Guixu
    [J]. IET IMAGE PROCESSING, 2015, 9 (02) : 134 - 141
  • [14] A novel approach to information fusion in multi-source datasets: A granular computing viewpoint
    Xu, Weihua
    Yu, Jianhang
    [J]. INFORMATION SCIENCES, 2017, 378 : 410 - 423
  • [15] MSIF: Multi-source information fusion based on information sets
    Yang, Feifei
    Zhang, Pengfei
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 44 (03) : 4103 - 4112
  • [16] Smartphone Zombie Context Awareness at Crossroads: A Multi-Source Information Fusion Approach
    Zhuang, Ying
    Fang, Zhixiang
    [J]. IEEE ACCESS, 2020, 8 (08): : 101963 - 101977
  • [17] Information fusion and numerical characterization of a multi-source information system
    Che, Xiaoya
    Mi, Jusheng
    Chen, Degang
    [J]. KNOWLEDGE-BASED SYSTEMS, 2018, 145 : 121 - 133
  • [18] Multi-Source Information Fusion with Multi-Criteria Evaluation
    Zhu, Lianli
    Zuo, Kezhu
    Zhu, Min
    Li, Xinde
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON DEVELOPMENT AND LEARNING, ICDL, 2023, : 530 - 535
  • [19] A Probabilistic Logic for Multi-source Heterogeneous Information Fusion
    Henderson, T. C.
    Simmons, R.
    Sacharny, D.
    Mitiche, A.
    Fan, X.
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON MULTISENSOR FUSION AND INTEGRATION FOR INTELLIGENT SYSTEMS (MFI), 2017, : 530 - 535
  • [20] Application of information fusion technologies for multi-source data
    Wu, Hao
    Seng, Dewen
    Fang, Xujian
    Xu, Haitao
    [J]. Journal of Chemical and Pharmaceutical Research, 2013, 5 (12) : 560 - 564