Exploring a Multi-source Fusion Approach for Genomics Information Retrieval

被引:0
|
作者
Hu, Qinmin Vivian [1 ]
Huang, Xiangji Jimmy [1 ]
Miao, Jun [1 ]
机构
[1] York Univ, Informat Retrieval & Knowledge Management Res Lab, Toronto, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Multi-source Fusion; Reciprocal; CombMNZ; Genomics; Information Retrieval;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we focus on the biomedicine domain to propose a multi-source fusion approach for improving information retrieval performance. First, we consider a common scenario for a metasearch system that has access to multiple baselines with retrieving and ranking documents/passages by their own models. Second, given selected baselines from multiple sources, we employ two modified fusion rules in the proposed approach, reciprocal and combMNZ, to rerank the candidates as the output for evaluation. Third, our empirical study on both 2007 and 2006 genomics data sets demonstrates the viability of the proposed approach to better performance fusion. Fourth, the experimental results show that the reciprocal method provides notable improvements on the individual baseline, especially on the effective passage MAP, the passage2-level and the diversity MAP, the aspect-level.
引用
收藏
页码:669 / 672
页数:4
相关论文
共 50 条
  • [1] A robust approach to optimizing multi-source information for enhancing genomics retrieval performance
    Hu, Qinmin
    Huang, Jimmy Xiangji
    Miao, Jun
    [J]. BMC BIOINFORMATICS, 2011, 12
  • [2] A robust approach to optimizing multi-source information for enhancing genomics retrieval performance
    Qinmin Hu
    Jimmy Xiangji Huang
    Jun Miao
    [J]. BMC Bioinformatics, 12
  • [3] Multi-source multi-sensor information fusion
    Jitendra R. Raol
    [J]. Sadhana, 2004, 29 : 143 - 144
  • [4] Multi-source multi-sensor information fusion
    Raol, JR
    [J]. SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2004, 29 (2): : 143 - 144
  • [5] Modeling intelligence information: Multi-source fusion
    Yager, RR
    [J]. 2005 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE FOR HOMELAND SECURITY AND PERSONAL SAFETY, 2005, : 2 - 7
  • [6] Multi-source information fusion: Progress and future
    Li, Xinde
    Dunkin, Fir
    Dezert, Jean
    [J]. CHINESE JOURNAL OF AERONAUTICS, 2024, 37 (07) : 24 - 58
  • [7] Multi-source information fusion:Progress and future
    Xinde LI
    Fir DUNKIN
    Jean DEZERT
    [J]. ChineseJournalofAeronautics, 2024, 37 (07) : 24 - 58
  • [8] A Fusion Method of Multi-Source Organization Information
    Sun, Zhen
    Zhao, Jie
    Jin, Jiang
    Gong, Zheng
    Xue, Chun
    Duan, Li-juan
    [J]. INTERNATIONAL ACADEMIC CONFERENCE ON THE INFORMATION SCIENCE AND COMMUNICATION ENGINEERING (ISCE 2014), 2014, : 626 - 632
  • [9] Multi-source Information Fusion for Depression Detection
    Wang, Rongquan
    Wang, Huiwei
    Hu, Yan
    Wei, Lin
    Ma, Huimin
    [J]. PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT V, 2024, 14429 : 517 - 528
  • [10] Ensemble Learning for Multi-source Information Fusion
    Beyer, Joerg
    Heesche, Kai
    Hauptmann, Werner
    Otte, Clemens
    Kruse, Rudolf
    [J]. SYMBOLIC AND QUANTITATIVE APPROACHES TO REASONING WITH UNCERTAINTY, PROCEEDINGS, 2009, 5590 : 748 - +