Prognostication of microstructure evolution during laser powder bed fusion of aluminum alloy using phase-field method

被引:3
|
作者
Sahoo, Seshadev [1 ]
机构
[1] Siksha O Anusandhan, Inst Tech Educ & Res, Dept Mech Engn, Bhubaneswar 751030, Odisha, India
关键词
modeling; phase-field method; laser powder bed fusion; microstructure; temperature gradient; DENDRITE GROWTH; SOLIDIFICATION; SIMULATION;
D O I
10.2351/7.0000658
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In the present study, a phase-field method-based microstructure model is developed to predict the microstructure of the AlSi10Mg alloy in the laser powder bed fusion process. For this purpose, the FORTRAN code is developed and used to solve the phase-field equations by considering different cases, i.e., without thermal fluctuation, with thermal fluctuation, and with a planar interface. From the simulation results, it is found that during rapid solidification of the AlSi10Mg alloy in the laser powder bed fusion process, a columnar equiaxed structure is formed with primary and secondary dendrites. Also, the dendritic growth velocity decreases with an increase in solidification time. The developed microstructure model will help the researchers to understand the microstructure evolution based on solidification conditions, i.e., temperature gradient, cooling rate, nuclei formation, etc. Also, the models give a fundamental understanding of the simulation procedure for the development of the new model for different alloy systems at different processing conditions. Published under an exclusive license by Laser Institute of America.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Microstructure, mechanical properties, and crack formation of aluminum alloy 6063 produced via laser powder bed fusion
    Feng Li
    Taomei Zhang
    Yiyou Wu
    Chao Chen
    Kechao Zhou
    Journal of Materials Science, 2022, 57 : 9631 - 9645
  • [22] Strengthening Mechanism of Microstructure of Aluminum Bronze Fabricated by Laser Powder Bed Fusion
    Imai, Ken
    Sugitani, Yuji
    Matsumoto, Seiichi
    Shimpo, Yoichiro
    Kyogoku, Hideki
    Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2024, 71 (12): : 679 - 685
  • [23] Enhancing the mechanical property of laser powder bed fusion CoCrMo alloy by tailoring the microstructure and phase constituent
    Zhang, Yu
    Lin, Wenhu
    Zhai, Zirong
    Wu, Yingna
    Yang, Rui
    Zhang, Zhenbo
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2023, 862
  • [24] Microstructure simulation of aluminum alloy casting using phase field method
    Zhang, GY
    Jing, T
    Liu, BC
    INTERNATIONAL JOURNAL OF CAST METALS RESEARCH, 2002, 15 (03) : 237 - 240
  • [25] Microstructure and tensile strength of AC8A aluminum alloy fabricated by laser-based powder bed fusion and electron-based powder bed fusion
    Adachi, Mitsuru
    Okuhira, Tomo
    Yamasaki, Shigeto
    Mitsuhara, Masatoshi
    Nakashima, Hideharu
    Koiwai, Shuji
    Hashizume, Yoshiki
    Murakami, Isao
    Terada, Daisuke
    Keikinzoku/Journal of Japan Institute of Light Metals, 2022, 72 (05): : 206 - 213
  • [26] Phase-field modeling of wetting and balling dynamics in powder bed fusion process
    Li, Lu
    Li, Ji-Qin
    Fan, Tai-Hsi
    PHYSICS OF FLUIDS, 2021, 33 (04)
  • [27] Powder movement rules of laser powder bed fusion additive manufacturing aluminum alloy based on discrete element method
    Pan, Lu
    Zhang, Chen-lin
    Liu, Tong
    Wang, Liang
    Zhang, Heng-hua
    ADVANCES IN MECHANICAL ENGINEERING, 2024, 16 (07)
  • [28] Compositionally graded titanium to aluminum processed by laser powder bed fusion process: Microstructure evolution and mechanical properties
    Daram, Phuangphaga
    Singh, Alok
    Hiroto, Takanobu
    Kitashima, Tomonori
    Watanabe, Makoto
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2024, 903
  • [29] Improving impact toughness of aluminum alloy through scanning strategy during laser powder bed fusion
    Shi, Shuoqing
    Zhao, Yufan
    Yang, Haiou
    Lin, Xin
    Jia, Chewang
    Huang, Weidong
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2025, 932
  • [30] Microstructure Evolution of FeNiCoCrAl1.3Mo0.5 High Entropy Alloy during Powder Preparation, Laser Powder Bed Fusion, and Microplasma Spraying
    Semikolenov, Anton
    Kuznetsov, Pavel
    Bobkova, Tatyana
    Shalnova, Svetlana
    Klimova-Korsmik, Olga
    Klinkov, Viktor
    Kobykhno, Ilya
    Larionova, Tatyana
    Tolochko, Oleg
    MATERIALS, 2021, 14 (24)