Exact geodesic distances in FLRW spacetimes

被引:5
|
作者
Cunningham, William J. [1 ]
Rideout, David [2 ]
Halverson, James [1 ]
Krioukov, Dmitri [3 ]
机构
[1] Northeastern Univ, Dept Phys, 360 Huntington Ave, Boston, MA 02115 USA
[2] Univ Calif San Diego, Dept Math, 9500 Gilman Dr Mail Code 0112, La Jolla, CA 92093 USA
[3] Northeastern Univ, Dept Elect & Comp Engn, Dept Math, Dept Phys, 360 Huntington Ave, Boston, MA 02115 USA
基金
美国国家科学基金会;
关键词
LARGE-SCALE STRUCTURE; INFLATIONARY UNIVERSE; RIEMANNIAN-MANIFOLDS; GENERAL-RELATIVITY; FLATNESS; HORIZON;
D O I
10.1103/PhysRevD.96.103538
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Geodesics are used in a wide array of applications in cosmology and astrophysics. However, it is not a trivial task to efficiently calculate exact geodesic distances in an arbitrary spacetime. We show that in spatially flat (3 + 1)-dimensional Friedmann-Lemaaetre- Robertson-Walker (FLRW) spacetimes, it is possible to integrate the second-order geodesic differential equations, and derive a general method for finding both timelike and spacelike distances given initial-value or boundary-value constraints. In flat spacetimes with either dark energy or matter, whether dust, radiation, or a stiff fluid, we find an exact closed-form solution for geodesic distances. In spacetimes with a mixture of dark energy and matter, including spacetimes used to model our physical universe, there exists no closed-form solution, but we provide a fast numerical method to compute geodesics. A general method is also described for determining the geodesic connectedness of an FLRW manifold, provided only its scale factor.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] A note on geodesic connectedness of Godel type spacetimes
    Bartolo, R.
    Candela, A. M.
    Flores, J. L.
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2011, 29 (06) : 779 - 786
  • [42] Geodesic connectedness of stationary spacetimes with optimal growth
    Bartolo, R.
    Candela, A. M.
    Flores, J. L.
    JOURNAL OF GEOMETRY AND PHYSICS, 2006, 56 (10) : 2025 - 2038
  • [43] Rest frame vacuum of the Dirac field on spatially flat FLRW spacetimes
    Ion I. Cotăescu
    The European Physical Journal C, 2019, 79
  • [44] COMPUTING GEODESIC DISTANCES IN TREE SPACE
    Owen, Megan
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2011, 25 (04) : 1506 - 1529
  • [45] STATISTICAL TESTS BASED ON GEODESIC DISTANCES
    MENENDEZ, ML
    MORALES, D
    PARDO, L
    SALICRU, M
    APPLIED MATHEMATICS LETTERS, 1995, 8 (01) : 65 - 69
  • [46] Global solutions for semilinear Klein-Gordon equations in FLRW spacetimes
    Galstian, Anahit
    Yagdjian, Karen
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 113 : 339 - 356
  • [47] Alpha geodesic distances for clustering of shapes
    De Sanctis, Angela A.
    Gattone, Stefano A.
    Oikonomou, Fotios D.
    RESULTS IN APPLIED MATHEMATICS, 2023, 18
  • [48] Affinity propagation clustering with geodesic distances
    Zhang, Liang
    Du, Ziping
    Journal of Computational Information Systems, 2010, 6 (01): : 47 - 53
  • [49] Computing geodesic distances on triangular meshes
    Novotni, M
    Klein, R
    WSCG'2002, VOLS I AND II, CONFERENCE PROCEEDINGS, 2002, : 341 - 347
  • [50] Geodesic distances in Liouville quantum gravity
    Ambjorn, J.
    Budd, T. G.
    NUCLEAR PHYSICS B, 2014, 889 : 676 - 691