Exact geodesic distances in FLRW spacetimes

被引:5
|
作者
Cunningham, William J. [1 ]
Rideout, David [2 ]
Halverson, James [1 ]
Krioukov, Dmitri [3 ]
机构
[1] Northeastern Univ, Dept Phys, 360 Huntington Ave, Boston, MA 02115 USA
[2] Univ Calif San Diego, Dept Math, 9500 Gilman Dr Mail Code 0112, La Jolla, CA 92093 USA
[3] Northeastern Univ, Dept Elect & Comp Engn, Dept Math, Dept Phys, 360 Huntington Ave, Boston, MA 02115 USA
基金
美国国家科学基金会;
关键词
LARGE-SCALE STRUCTURE; INFLATIONARY UNIVERSE; RIEMANNIAN-MANIFOLDS; GENERAL-RELATIVITY; FLATNESS; HORIZON;
D O I
10.1103/PhysRevD.96.103538
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Geodesics are used in a wide array of applications in cosmology and astrophysics. However, it is not a trivial task to efficiently calculate exact geodesic distances in an arbitrary spacetime. We show that in spatially flat (3 + 1)-dimensional Friedmann-Lemaaetre- Robertson-Walker (FLRW) spacetimes, it is possible to integrate the second-order geodesic differential equations, and derive a general method for finding both timelike and spacelike distances given initial-value or boundary-value constraints. In flat spacetimes with either dark energy or matter, whether dust, radiation, or a stiff fluid, we find an exact closed-form solution for geodesic distances. In spacetimes with a mixture of dark energy and matter, including spacetimes used to model our physical universe, there exists no closed-form solution, but we provide a fast numerical method to compute geodesics. A general method is also described for determining the geodesic connectedness of an FLRW manifold, provided only its scale factor.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] GLOBAL EXISTENCE OF SMOOTH SOLUTIONS TO EXPONENTIAL WAVE MAPS IN FLRW SPACETIMES
    Wei, Chang-Hua
    Lai, Ning-An
    PACIFIC JOURNAL OF MATHEMATICS, 2017, 289 (02) : 489 - 509
  • [32] Separable geodesic action slicing in stationary spacetimes
    Bini, Donato
    Geralico, Andrea
    Jantzen, Robert T.
    GENERAL RELATIVITY AND GRAVITATION, 2012, 44 (03) : 603 - 621
  • [33] Separable geodesic action slicing in stationary spacetimes
    Donato Bini
    Andrea Geralico
    Robert T. Jantzen
    General Relativity and Gravitation, 2012, 44 : 603 - 621
  • [34] Geodesic deviation and particle creation in curved spacetimes
    A. Mironov
    A. Morozov
    T. N. Tomaras
    JETP Letters, 2012, 94 : 795 - 799
  • [35] Geodesic motion in Bogoslovsky-Finsler spacetimes
    Elbistan, M.
    Zhang, P-M
    Dimakis, N.
    Gibbons, G. W.
    Horvathy, P. A.
    PHYSICAL REVIEW D, 2020, 102 (02):
  • [36] VANVLECK DETERMINANTS - GEODESIC FOCUSING IN LORENTZIAN SPACETIMES
    VISSER, M
    PHYSICAL REVIEW D, 1993, 47 (06): : 2395 - 2402
  • [37] Geodesic dynamics in Chazy-Curzon spacetimes
    Dubeibe, F. L.
    Arias H, J. D.
    Alfonso, J. E.
    INDIAN JOURNAL OF PHYSICS, 2019, 93 (12) : 1635 - 1641
  • [38] Rest frame vacuum of the Dirac field on spatially flat FLRW spacetimes
    Cotaescu, Ion I.
    EUROPEAN PHYSICAL JOURNAL C, 2019, 79 (08):
  • [39] Totally geodesic and parallel hypersurfaces of Siklos spacetimes
    Calvaruso, Giovanni
    Pellegrino, Lorenzo
    Van der Veken, Joeri
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2024, 21 (06)
  • [40] Geodesic Deviation and Particle Creation in Curved Spacetimes
    Mironov, A.
    Morozov, A.
    Tomaras, T. N.
    JETP LETTERS, 2012, 94 (11) : 795 - 799