Rogue wave solutions for the generalized fifth-order nonlinear Schrodinger equation on the periodic background

被引:19
|
作者
Wang, Zijia
Zhaqilao [1 ]
机构
[1] Inner Mongolia Normal Univ, Coll Math Sci, Hohhot 010022, Peoples R China
基金
中国国家自然科学基金;
关键词
Rogue wave solutions; The generalized fifth-order NLS equation; Darboux transformation; Jacobi elliptic function; BREATHERS; SOLITONS;
D O I
10.1016/j.wavemoti.2021.102839
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this paper, we construct the rogue wave solutions on the background of the Jacobi elliptic functions for a generalized fifth-order nonlinear Schrodinger (NLS) equation. Using the Jacobi elliptic function expansion method, we reduce this higher-order nonlinear equation to a lower-order ordinary differential equation. Through the approach of the nonlinearization of spectral problem and then the Darboux transformation method, two kinds of rogue periodic waves which are on dn and cn Jacobi elliptic functions background are obtained. Furthermore, we represent the nonlinear dynamics of the rogue periodic wave solutions of this higher-order equation. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Nonlinear waves in the modulation instability regime for the fifth-order nonlinear Schrodinger equation
    Li, Ping
    Wang, Lei
    Kong, Liang-Qian
    Wang, Xin
    Xie, Ze-Yu
    [J]. APPLIED MATHEMATICS LETTERS, 2018, 85 : 110 - 117
  • [42] Collision of N-solitons in a fifth-order nonlinear Schrodinger equation
    Yomba, Emmanuel
    Zakeri, Gholam-Ali
    [J]. WAVE MOTION, 2017, 72 : 101 - 112
  • [43] VARIOUS EXACT TRAVELLING WAVE SOLUTIONS FOR KUNDU EQUATION WITH FIFTH-ORDER NONLINEAR TERM
    Zhang, Huiqun
    [J]. REPORTS ON MATHEMATICAL PHYSICS, 2010, 65 (02) : 231 - 239
  • [44] Rogue wave solutions for a higher-order nonlinear Schrodinger equation in an optical fiber
    Lan, Zhong-Zhou
    [J]. APPLIED MATHEMATICS LETTERS, 2020, 107
  • [45] Specific wave structures of a fifth-order nonlinear water wave equation
    Hosseini, K.
    Mirzazadeh, M.
    Salahshour, S.
    Baleanu, D.
    Zafar, A.
    [J]. JOURNAL OF OCEAN ENGINEERING AND SCIENCE, 2022, 7 (05) : 462 - 466
  • [46] Rogue wave solutions of the nonlinear Schrodinger equation with variable coefficients
    Liu, Changfu
    Li, Yan Yan
    Gao, Meiping
    Wang, Zeping
    Dai, Zhengde
    Wang, Chuanjian
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2015, 85 (06): : 1063 - 1072
  • [47] On the stability of solitary wave solutions of the fifth-order KdV equation
    Buryak, AV
    Champneys, AR
    [J]. PHYSICS LETTERS A, 1997, 233 (1-2) : 58 - 62
  • [48] Multi-rogue wave solutions for a generalized integrable discrete nonlinear Schrodinger equation with higher-order excitations
    Yang, Jun
    Zhang, Yan-Li
    Ma, Li-Yuan
    [J]. NONLINEAR DYNAMICS, 2021, 105 (01) : 629 - 641
  • [49] Integrability and wave solutions for fifth-order KdV type equation
    Gaber, A. A.
    [J]. INTERNATIONAL JOURNAL OF ADVANCED AND APPLIED SCIENCES, 2020, 7 (04): : 103 - 106
  • [50] Rogue waves on the double-periodic background for a nonlinear Schrodinger equation with higher-order effects
    Zhang, Hai-Qiang
    Liu, Rui
    Chen, Fa
    [J]. NONLINEAR DYNAMICS, 2023, 111 (01) : 645 - 654