Rogue wave solutions for the generalized fifth-order nonlinear Schrodinger equation on the periodic background

被引:19
|
作者
Wang, Zijia
Zhaqilao [1 ]
机构
[1] Inner Mongolia Normal Univ, Coll Math Sci, Hohhot 010022, Peoples R China
基金
中国国家自然科学基金;
关键词
Rogue wave solutions; The generalized fifth-order NLS equation; Darboux transformation; Jacobi elliptic function; BREATHERS; SOLITONS;
D O I
10.1016/j.wavemoti.2021.102839
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this paper, we construct the rogue wave solutions on the background of the Jacobi elliptic functions for a generalized fifth-order nonlinear Schrodinger (NLS) equation. Using the Jacobi elliptic function expansion method, we reduce this higher-order nonlinear equation to a lower-order ordinary differential equation. Through the approach of the nonlinearization of spectral problem and then the Darboux transformation method, two kinds of rogue periodic waves which are on dn and cn Jacobi elliptic functions background are obtained. Furthermore, we represent the nonlinear dynamics of the rogue periodic wave solutions of this higher-order equation. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条