Development and validation of a deep-learning algorithm for the detection of polyps during colonoscopy

被引:331
|
作者
Wang, Pu [1 ,2 ]
Xiao, Xiao [3 ]
Brown, Jeremy R. Glissen [4 ,5 ]
Berzin, Tyler M. [4 ,5 ]
Tu, Mengtian [1 ,2 ]
Xiong, Fei [1 ,2 ]
Hu, Xiao [1 ,2 ]
Liu, Peixi [1 ,2 ]
Song, Yan [1 ,2 ]
Zhang, Di [1 ,2 ]
Yang, Xue [1 ,2 ]
Li, Liangping [1 ,2 ]
He, Jiong [3 ]
Yi, Xin [3 ]
Liu, Jingjia [3 ]
Liu, Xiaogang [1 ,2 ]
机构
[1] Sichuan Acad Med Sci, Chengdu, Sichuan, Peoples R China
[2] Sichuan Prov Peoples Hosp, Chengdu, Sichuan, Peoples R China
[3] Shanghai Wision Al Co Ltd, Shanghai, Peoples R China
[4] Beth Israel Deaconess Med Ctr, Boston, MA 02215 USA
[5] Harvard Med Sch, Ctr Adv Endoscopy, Boston, MA USA
来源
NATURE BIOMEDICAL ENGINEERING | 2018年 / 2卷 / 10期
关键词
COMPUTER-AIDED DIAGNOSIS; COLORECTAL-CANCER; MISS RATE; CLASSIFICATION; PARTICIPATION; POLYPECTOMY; MULTICENTER; GUIDELINES; INCREASES; HISTOLOGY;
D O I
10.1038/s41551-018-0301-3
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The detection and removal of precancerous polyps via colonoscopy is the gold standard for the prevention of colon cancer. However, the detection rate of adenomatous polyps can vary significantly among endoscopists. Here, we show that a machine-learning algorithm can detect polyps in clinical colonoscopies, in real time and with high sensitivity and specificity. We developed the deep-learning algorithm by using data from 1,290 patients, and validated it on newly collected 27,113 colonoscopy images from 1,138 patients with at least one detected polyp (per-image-sensitivity, 94.38%; per-image-specificity, 95.92%; area under the receiver operating characteristic curve, 0.984), on a public database of 612 polyp-containing images (per-image-sensitivity, 88.24%), on 138 colonoscopy videos with histologically confirmed polyps (per-image-sensitivity of 91.64%; per-polyp-sensitivity, 100%), and on 54 unaltered full-range colonoscopy videos without polyps (per-image-specificity, 95.40%). By using a multi-threaded processing system, the algorithm can process at least 25 frames per second with a latency of 76.80 +/- 5.60 ms in real-time video analysis. The software may aid endoscopists while performing colonoscopies, and help assess differences in polyp and adenoma detection performance among endoscopists.
引用
收藏
页码:741 / 748
页数:8
相关论文
共 50 条
  • [41] Deep-learning Object Detection for Resource Recycling
    Lai, Yeong-Lin
    Lai, Yeong-Kang
    Shih, Syuan-Yu
    Zheng, Chun-Yi
    Chuang, Ting-Hsueh
    2020 5TH INTERNATIONAL CONFERENCE ON PRECISION MACHINERY AND MANUFACTURING TECHNOLOGY, 2020, 1583
  • [42] A Deep-Learning Approach to Driver Drowsiness Detection
    Ahmed, Mohammed Imran Basheer
    Alabdulkarem, Halah
    Alomair, Fatimah
    Aldossary, Dana
    Alahmari, Manar
    Alhumaidan, Munira
    Alrassan, Shoog
    Rahman, Atta
    Youldash, Mustafa
    Zaman, Gohar
    SAFETY, 2023, 9 (03)
  • [43] The development and validation of a deep learning algorithm for referable diabetic retinopathy
    Keel, Stuart
    Li, Zhixi
    He, Yifan
    Meng, Wei
    Chang, Robert
    He, Mingguang
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2018, 59 (09)
  • [44] Damage Detection in Rods via Use of a Genetic Algorithm and a Deep-Learning Based Surrogate
    Sharma, Jitendra K.
    Soman, Rohan
    Kudela, Pawel
    Chatzi, Eleni
    Ostachowicz, Wieslaw
    EUROPEAN WORKSHOP ON STRUCTURAL HEALTH MONITORING (EWSHM 2022), VOL 3, 2023, : 272 - 280
  • [45] Prevalence and variable detection rates of serrated polyps during colonoscopy
    Kiel, N. J.
    Smith, A. J.
    Leggett, B. A.
    Appleyard, M. N.
    Hewett, D. G.
    JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, 2011, 26 : 26 - 26
  • [46] Detection and classification of intracranial haemorrhage on CT images using a novel deep-learning algorithm
    Ji Young Lee
    Jong Soo Kim
    Tae Yoon Kim
    Young Soo Kim
    Scientific Reports, 10
  • [47] An explainable deep-learning algorithm for the detection of acute intracranial haemorrhage from small datasets
    Hyunkwang Lee
    Sehyo Yune
    Mohammad Mansouri
    Myeongchan Kim
    Shahein H. Tajmir
    Claude E. Guerrier
    Sarah A. Ebert
    Stuart R. Pomerantz
    Javier M. Romero
    Shahmir Kamalian
    Ramon G. Gonzalez
    Michael H. Lev
    Synho Do
    Nature Biomedical Engineering, 2019, 3 : 173 - 182
  • [48] Development of a Deep-Learning Algorithm for Small Bowel-Lesion Detection and a Study of the Improvement in the False-Positive Rate
    Hosoe, Naoki
    Horie, Tomofumi
    Tojo, Anna
    Sakurai, Hinako
    Hayashi, Yukie
    Kamiya, Kenji Jose-Luis Limpias
    Sujino, Tomohisa
    Takabayashi, Kaoru
    Ogata, Haruhiko
    Kanai, Takanori
    JOURNAL OF CLINICAL MEDICINE, 2022, 11 (13)
  • [49] Deep-Learning Based Segmentation Algorithm for Defect Detection in Magnetic Particle Testing Images
    Ueda, Akira
    Lu, Huimin
    Kamiya, Tohru
    PROCEEDINGS OF THE 2021 INTERNATIONAL CONFERENCE ON ARTIFICIAL LIFE AND ROBOTICS (ICAROB 2021), 2021, : 235 - 238
  • [50] An explainable deep-learning algorithm for the detection of acute intracranial haemorrhage from small datasets
    Lee, Hyunkwang
    Yune, Sehyo
    Mansouri, Mohammad
    Kim, Myeongchan
    Tajmir, Shahein H.
    Guerrieri, Claude E.
    Ebert, Sarah A.
    Pomerantz, Stuart R.
    Romero, Javier M.
    Kamalian, Shahmir
    Gonzalez, Ramon G.
    Lev, Michael H.
    Do, Synho
    NATURE BIOMEDICAL ENGINEERING, 2019, 3 (03) : 173 - +