Development and validation of a deep-learning algorithm for the detection of polyps during colonoscopy

被引:331
|
作者
Wang, Pu [1 ,2 ]
Xiao, Xiao [3 ]
Brown, Jeremy R. Glissen [4 ,5 ]
Berzin, Tyler M. [4 ,5 ]
Tu, Mengtian [1 ,2 ]
Xiong, Fei [1 ,2 ]
Hu, Xiao [1 ,2 ]
Liu, Peixi [1 ,2 ]
Song, Yan [1 ,2 ]
Zhang, Di [1 ,2 ]
Yang, Xue [1 ,2 ]
Li, Liangping [1 ,2 ]
He, Jiong [3 ]
Yi, Xin [3 ]
Liu, Jingjia [3 ]
Liu, Xiaogang [1 ,2 ]
机构
[1] Sichuan Acad Med Sci, Chengdu, Sichuan, Peoples R China
[2] Sichuan Prov Peoples Hosp, Chengdu, Sichuan, Peoples R China
[3] Shanghai Wision Al Co Ltd, Shanghai, Peoples R China
[4] Beth Israel Deaconess Med Ctr, Boston, MA 02215 USA
[5] Harvard Med Sch, Ctr Adv Endoscopy, Boston, MA USA
来源
NATURE BIOMEDICAL ENGINEERING | 2018年 / 2卷 / 10期
关键词
COMPUTER-AIDED DIAGNOSIS; COLORECTAL-CANCER; MISS RATE; CLASSIFICATION; PARTICIPATION; POLYPECTOMY; MULTICENTER; GUIDELINES; INCREASES; HISTOLOGY;
D O I
10.1038/s41551-018-0301-3
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The detection and removal of precancerous polyps via colonoscopy is the gold standard for the prevention of colon cancer. However, the detection rate of adenomatous polyps can vary significantly among endoscopists. Here, we show that a machine-learning algorithm can detect polyps in clinical colonoscopies, in real time and with high sensitivity and specificity. We developed the deep-learning algorithm by using data from 1,290 patients, and validated it on newly collected 27,113 colonoscopy images from 1,138 patients with at least one detected polyp (per-image-sensitivity, 94.38%; per-image-specificity, 95.92%; area under the receiver operating characteristic curve, 0.984), on a public database of 612 polyp-containing images (per-image-sensitivity, 88.24%), on 138 colonoscopy videos with histologically confirmed polyps (per-image-sensitivity of 91.64%; per-polyp-sensitivity, 100%), and on 54 unaltered full-range colonoscopy videos without polyps (per-image-specificity, 95.40%). By using a multi-threaded processing system, the algorithm can process at least 25 frames per second with a latency of 76.80 +/- 5.60 ms in real-time video analysis. The software may aid endoscopists while performing colonoscopies, and help assess differences in polyp and adenoma detection performance among endoscopists.
引用
收藏
页码:741 / 748
页数:8
相关论文
共 50 条
  • [31] Sparse deep-learning algorithm for recognition and categorisation
    Charalampous, K.
    Kostavelis, I.
    Amanatiadis, A.
    Gasteratos, A.
    ELECTRONICS LETTERS, 2012, 48 (20) : 1259 - +
  • [32] Development of a deep-learning algorithm for age estimation on CT images of the vertebral column
    Kawashita, Ikuo
    Fukumoto, Wataru
    Mitani, Hidenori
    Narita, Keigo
    Chosa, Keigo
    Nakamura, Yuko
    Nagao, Masataka
    Awai, Kazuo
    LEGAL MEDICINE, 2024, 69
  • [33] Development and validation of an algorithm for classifying colonoscopy indication
    Lee, Jeffrey K.
    Jensen, Christopher D.
    Lee, Alexander
    Doubeni, Chyke A.
    Zauber, Ann G.
    Levin, Theodore R.
    Zhao, Wei K.
    Corley, Douglas A.
    GASTROINTESTINAL ENDOSCOPY, 2015, 81 (03) : 575 - U503
  • [34] Development and Validation of a Deep-learning Model to Assist With Renal Cell Carcinoma Histopathologic Interpretation
    Fenstermaker, Michael
    Tomlins, Scott A.
    Singh, Karandeep
    Wiens, Jenna
    Morgan, Todd M.
    UROLOGY, 2020, 144 : 152 - 156
  • [35] Prediction of systemic biomarkers from retinal photographs: development and validation of deep-learning algorithms
    Rim, Tyler Hyungtaek
    Lee, Geunyoung
    Kim, Youngnam
    Tham, Yih-Chung
    Lee, Chan Joo
    Baik, Su Jung
    Kim, Yong Ah
    Yu, Marco
    Deshmukh, Mihir
    Lee, Byoung Kwon
    Park, Sungha
    Kim, Hyeon Chang
    Sabayanagam, Charumathi
    Ting, Daniel S. W.
    Wang, Ya Xing
    Jonas, Jost B.
    Kim, Sung Soo
    Wong, Tien Yin
    Cheng, Ching-Yu
    LANCET DIGITAL HEALTH, 2020, 2 (10): : E526 - E536
  • [36] Development and validation of a deep-learning based assistance system for enhancing laparoscopic control level
    Zheng, Qingyuan
    Yang, Rui
    Yang, Song
    Ni, Xinmiao
    Li, Yanze
    Jiang, Zhengyu
    Wang, Xinyu
    Wang, Lei
    Chen, Zhiyuan
    Liu, Xiuheng
    INTERNATIONAL JOURNAL OF MEDICAL ROBOTICS AND COMPUTER ASSISTED SURGERY, 2023, 19 (01):
  • [37] Automated Polyp Detection System in Colonoscopy using Object Detection Algorithm based on Deep Learning
    Lee J.-N.
    Cho H.-C.
    Transactions of the Korean Institute of Electrical Engineers, 2021, 70 (01): : 152 - 157
  • [38] Deep-learning for dysgraphia detection in children handwritings
    Gemelli, Andrea
    Marinai, Simone
    Vivoli, Emanuele
    Zappaterra, Tamara
    PROCEEDINGS OF THE 2023 ACM SYMPOSIUM ON DOCUMENT ENGINEERING, DOCENG 2023, 2023,
  • [39] Classification of Polyps and Adenomas Using Deep Learning Model in Screening Colonoscopy
    Liu, Xiaoda
    Li, Ya
    Yao, Jianning
    Chen, Bing
    Song, Jiayou
    Yang, Xiaonan
    2019 8TH INTERNATIONAL SYMPOSIUM ON NEXT GENERATION ELECTRONICS (ISNE), 2019,
  • [40] Deep learning to find colorectal polyps in colonoscopy: A systematic literature review
    Sanchez-Peralta, Luisa F.
    Bote-Curiel, Luis
    Picon, Artzai
    Sanchez-Margallo, Francisco M.
    Blas Pagador, J.
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2020, 108